一、什么是回流

当render tree中的一部分(或全部)因为元素的规模尺寸,布局,隐藏等改变而需要重新构建。这就称为回流(reflow)。每个页面至少需要一次回流,就是在页面第一次加载的时候,这时候是一定会发生回流的,因为要构建render tree。在回流的时候,浏览器会使渲染树中受到影响的部分失效,并重新构造这部分渲染树,完成回流后,浏览器会重新绘制受影响的部分到屏幕中,该过程成为重绘。

二、什么是重绘

当render tree中的一些元素需要更新属性,而这些属性只是影响元素的外观,风格,而不会影响布局的,比如background-color。则就叫称为重绘。

三、何时发生回流

回流这一阶段主要是计算节点的位置和几何信息,那么当页面布局和几何信息发生变化的时候,就需要回流。比如以下情况:

  • 添加或删除可见的DOM元素
  • 元素的位置发生变化
  • 元素的尺寸发生变化(包括外边距、内边框、边框大小、高度和宽度等)
  • 内容发生变化,比如文本变化或图片被另一个不同尺寸的图片所替代。
  • 页面一开始渲染的时候(这肯定避免不了)
  • 浏览器的窗口尺寸变化(因为回流是根据视口的大小来计算元素的位置和大小的)

注意:回流一定会触发重绘,而重绘不一定会回流
根据改变的范围和程度,渲染树中或大或小的部分需要重新计算,有些改变会触发整个页面的重排,比如,滚动条出现的时候或者修改了根节点。

四、何时发生重绘

当元素的color等,不影响元素结构的属性变化时,会发生重绘。

—————————————————————————————————————————————————

五、浏览器的优化机制

现代的浏览器都是很聪明的,由于每次重排都会造成额外的计算消耗,因此大多数浏览器都会通过队列化修改并批量执行来优化重排过程。浏览器会将修改操作放入到队列里,直到过了一段时间或者操作达到了一个阈值,才清空队列。但是!当你获取布局信息的操作的时候,会强制队列刷新,比如当你访问以下属性或者使用以下方法:

  • offsetTop、offsetLeft、offsetWidth、offsetHeight
  • scrollTop、scrollLeft、scrollWidth、scrollHeight
  • clientTop、clientLeft、clientWidth、clientHeight
  • getComputedStyle()
  • getBoundingClientRect
  • 具体可以访问这个网站:https://gist.github.com/pauli…点击预览

以上属性和方法都需要返回最新的布局信息,因此浏览器不得不清空队列,触发回流重绘来返回正确的值。因此,我们在修改样式的时候,最好避免使用上面列出的属性,他们都会刷新渲染队列。如果要使用它们,最好将值缓存起来。

——————————————————————————————————————————————

六、减少回流和重绘

1.最小化重绘和重排

由于重绘和重排可能代价比较昂贵,因此最好就是可以减少它的发生次数。为了减少发生次数,我们可以合并多次对DOM和样式的修改,然后一次处理掉。考虑这个例子:

  1. const el = document.getElementById('test');
  2. el.style.padding = '5px';
  3. el.style.borderLeft = '1px';
  4. el.style.borderRight = '2px';

例子中,有三个样式属性被修改了,每一个都会影响元素的几何结构,引起回流。当然,大部分现代浏览器都对其做了优化,因此,只会触发一次重排。但是如果在旧版的浏览器或者在上面代码执行的时候,有其他代码访问了布局信息(上文中的会触发回流的布局信息),那么就会导致三次重排。
因此,我们可以合并所有的改变然后依次处理,比如我们可以采取以下的方式:

  • 使用cssText

    1. const el = document.getElementById('test');
    2. el.style.cssText += 'border-left: 1px; border-right: 2px; padding: 5px;';
  • 修改CSS的class

    1. const el = document.getElementById('test');
    2. el.className += ' active';

    2.批量修改DOM

    当我们需要对DOM对一系列修改的时候,可以通过以下步骤减少回流重绘次数:

  1. 使元素脱离文档流
  2. 对其进行多次修改
  3. 将元素带回到文档中。

该过程的第一步和第三步可能会引起回流,但是经过第一步之后,对DOM的所有修改都不会引起回流,因为它已经不在渲染树了。

有三种方式可以让DOM脱离文档流:

  • 隐藏元素,应用修改,重新显示
  • 使用文档片段(document fragment)在当前DOM之外构建一个子树,再把它拷贝回文档。
  • 将原始元素拷贝到一个脱离文档的节点中,修改节点后,再替换原始的元素。

考虑我们要执行一段批量插入节点的代码:

  1. function appendDataToElement(appendToElement, data) {
  2. let li;
  3. for (let i = 0; i < data.length; i++) {
  4. li = document.createElement('li');
  5. li.textContent = 'text';
  6. appendToElement.appendChild(li);
  7. }
  8. }
  9. const ul = document.getElementById('list');
  10. appendDataToElement(ul, data);

如果我们直接这样执行的话,由于每次循环都会插入一个新的节点,会导致浏览器回流一次。
我们可以使用这三种方式进行优化:
隐藏元素,应用修改,重新显示
这个会在展示和隐藏节点的时候,产生两次重绘

  1. function appendDataToElement(appendToElement, data) {
  2. let li;
  3. for (let i = 0; i < data.length; i++) {
  4. li = document.createElement('li');
  5. li.textContent = 'text';
  6. appendToElement.appendChild(li);
  7. }
  8. }
  9. const ul = document.getElementById('list');
  10. ul.style.display = 'none';
  11. appendDataToElement(ul, data);
  12. ul.style.display = 'block';

使用文档片段(document fragment)在当前DOM之外构建一个子树,再把它拷贝回文档

  1. const ul = document.getElementById('list');
  2. const fragment = document.createDocumentFragment();
  3. appendDataToElement(fragment, data);
  4. ul.appendChild(fragment);

将原始元素拷贝到一个脱离文档的节点中,修改节点后,再替换原始的元素。

  1. const ul = document.getElementById('list');
  2. const clone = ul.cloneNode(true);
  3. appendDataToElement(clone, data);
  4. ul.parentNode.replaceChild(clone, ul);

对于上述那种情况,我写了一个demo来测试修改前和修改后的性能。然而实验结果不是很理想。

原因:原因其实上面也说过了,浏览器会使用队列来储存多次修改,进行优化,所以对这个优化方案,我们其实不用优先考虑。

3.避免触发同步布局事件

上文我们说过,当我们访问元素的一些属性的时候,会导致浏览器强制清空队列,进行强制同步布局。举个例子,比如说我们想将一个p标签数组的宽度赋值为一个元素的宽度,我们可能写出这样的代码:

  1. function initP() {
  2. for (let i = 0; i < paragraphs.length; i++) {
  3. paragraphs[i].style.width = box.offsetWidth + 'px';
  4. }
  5. }

这段代码看上去是没有什么问题,可是其实会造成很大的性能问题。在每次循环的时候,都读取了box的一个offsetWidth属性值,然后利用它来更新p标签的width属性。这就导致了每一次循环的时候,浏览器都必须先使上一次循环中的样式更新操作生效,才能响应本次循环的样式读取操作。每一次循环都会强制浏览器刷新队列。我们可以优化为:

  1. const width = box.offsetWidth;
  2. function initP() {
  3. for (let i = 0; i < paragraphs.length; i++) {
  4. paragraphs[i].style.width = width + 'px';
  5. }
  6. }

同样,我也写了个demo来比较两者的性能差异。你可以自己点开这个demo体验下。这个对比差距就比较明显。

4.对于复杂动画效果,使用绝对定位让其脱离文档流

对于复杂动画效果,由于会经常的引起回流重绘,因此,我们可以使用绝对定位,让它脱离文档流。否则会引起父元素以及后续元素频繁的回流。

5.css3硬件加速(GPU加速)

比起考虑如何减少回流重绘,我们更期望的是,根本不要回流重绘。这个时候,css3硬件加速就闪亮登场啦!!
划重点:使用css3硬件加速,可以让transform、opacity、filters这些动画不会引起回流重绘 。但是对于动画的其它属性,比如background-color这些,还是会引起回流重绘的,不过它还是可以提升这些动画的性能。

如何使用

常见的触发硬件加速的css属性:

  • transform
  • opacity
  • filters
  • Will-change

    重点

  • 使用css3硬件加速,可以让transform、opacity、filters这些动画不会引起回流重绘

  • 对于动画的其它属性,比如background-color这些,还是会引起回流重绘的,不过它还是可以提升这些动画的性能。

    css3硬件加速的坑

  • 如果你为太多元素使用css3硬件加速,会导致内存占用较大,会有性能问题。

  • 在GPU渲染字体会导致抗锯齿无效。这是因为GPU和CPU的算法不同。因此如果你不在动画结束的时候关闭硬件加速,会产生字体模糊。