微分漫谈(之一) —— 什么是函数的微分?


    考虑连续函数differential-1 - 图1#card=math&code=y%3Df%28x%29&id=qeFzH),并设在differential-1 - 图2这个点,其图像有切线。熟知切线方程是differential-1 - 图3%20%3D%20f%E2%80%99(a)(x-a)#card=math&code=y-f%28a%29%20%3D%20f%E2%80%99%28a%29%28x-a%29&id=snRwd). 记differential-1 - 图4%20%3D%20f(a)%20%2B%20f%E2%80%99(a)(x-a)#card=math&code=L%28x%29%20%3D%20f%28a%29%20%2B%20f%E2%80%99%28a%29%28x-a%29&id=LAlrw).

    设有另一个点differential-1 - 图5)#card=math&code=Q%28a%2Bh%2C%20f%28a%2Bh%29%29&id=be4pk) 在differential-1 - 图6附近, 从点differential-1 - 图7变到点differential-1 - 图8时,自变量的改变是differential-1 - 图9,函数值的改变是differential-1 - 图10%20%E2%80%93%20f(a)#card=math&code=%5CDelta%20y%3Df%28a%2Bh%29%20%E2%80%93%20f%28a%29&id=BuUTb).

    问题:能否估计differential-1 - 图11?不妨从一些特例开始。

    (1)先看differential-1 - 图12%3Dkx%2Bb#card=math&code=f%28x%29%3Dkx%2Bb&id=diHoU)是一次函数的情形,即其图像是一条直线。直接计算可知differential-1 - 图13 这启发我们,可以用differential-1 - 图14来估算differential-1 - 图15.

    (2)再看二次函数的情形:differential-1 - 图16%3DAx%5E2%2BBx%2BC#card=math&code=f%28x%29%3DAx%5E2%2BBx%2BC&id=UexIl)。直接计算可知differential-1 - 图17h%2BBh%20%3D%20(2Aa%2BB)h%2Bh%5E2#card=math&code=%5CDelta%20y%20%3D%20A%282a%2Bh%29h%2BBh%20%3D%20%282Aa%2BB%29h%2Bh%5E2&id=tsHb2). 因为点differential-1 - 图18在点differential-1 - 图19附近,所以可以假设differential-1 - 图20很小,于是differential-1 - 图21更小,基本可以忽略不计。于是可以写

    differential-1 - 图22%5CDelta%20x%20%2B%20o(%5CDelta%20x)%20%3D%20f’(a)%5CDelta%20x%20%2B%20o(%5CDelta%20x).%0A#card=math&code=%5CDelta%20y%20%3D%20%282Aa%2BB%29%5CDelta%20x%20%2B%20o%28%5CDelta%20x%29%20%3D%20f%27%28a%29%5CDelta%20x%20%2B%20o%28%5CDelta%20x%29.%0A&id=IJ7Q3)

    函数differential-1 - 图23#card=math&code=y%3Df%28x%29&id=lgbtx)在点differential-1 - 图24)#card=math&code=P%28a%2C%20f%28a%29%29&id=xPk93)处的切线是differential-1 - 图25%3Df(a)%2B(2Aa%2BB)(x-a)#card=math&code=L%28x%29%3Df%28a%29%2B%282Aa%2BB%29%28x-a%29&id=CCQJY). 如果在点differential-1 - 图26附近,用differential-1 - 图27#card=math&code=L%28x%29&id=qljv6)代替原来的二次函数differential-1 - 图28%3DAx%5E2%2BBx%2BC#card=math&code=f%28x%29%3DAx%5E2%2BBx%2BC&id=LfTK2), 那么函数值的变化是differential-1 - 图29-L(P)%3DL(a%2Bh)-L(a)%3D(2Aa%2BB)h#card=math&code=L%28Q%29-L%28P%29%3DL%28a%2Bh%29-L%28a%29%3D%282Aa%2BB%29h&id=taM1s).

    结论:differential-1 - 图30 中,占了大头的量是differential-1 - 图31%5CDelta%20x%20%3D%20(2Aa%2BB)h#card=math&code=f%27%28a%29%5CDelta%20x%20%3D%20%282Aa%2BB%29h&id=yjtAA). 在点differential-1 - 图32附近,如果用过点differential-1 - 图33的切线来替换函数的图像,当横坐标从differential-1 - 图34变成differential-1 - 图35时,切线上的点的纵坐标变换量也是differential-1 - 图36h%3D(2Aa%2BB)h#card=math&code=f%27%28a%29h%3D%282Aa%2BB%29h&id=I1QvT).

    (3)现在看differential-1 - 图37%3D%5Csin(x)#card=math&code=f%28x%29%3D%5Csin%28x%29&id=AwkGz). 直接计算可知

    differential-1 - 图38-%5Csin%20a%20%3D%20%5Ccos%20a%20%5Csin%20h%20%2B%20%5Csin%20a%20(%5Ccos%20h%20-%201).%0A#card=math&code=%5CDelta%20y%20%3D%20%5Csin%28a%2Bh%29-%5Csin%20a%20%3D%20%5Ccos%20a%20%5Csin%20h%20%2B%20%5Csin%20a%20%28%5Ccos%20h%20-%201%29.%0A&id=lOWkV)

    初看之下,似乎不能把上面等式改写成differential-1 - 图39%20%5CDelta%20x%20%2B%20o(%5CDelta%20x)#card=math&code=%5CDelta%20y%20%3D%20f%27%28a%29%20%5CDelta%20x%20%2B%20o%28%5CDelta%20x%29&id=wA2H4)的形式,但是注意到有等价无穷小量differential-1 - 图40#card=math&code=%5Csin%20h%20%20%5Csim%20h%2C%20%5Ccos%20h%20-%201%20%5Csim%20%28h%5E2%2F2%29&id=nx9eO), 于是仍有differential-1 - 图41. 即仍然有

    differential-1 - 图42%5CDelta%20x%20%3D%20o(%5CDelta%20x).%0A#card=math&code=%5CDelta%20y%20-%20f%27%28a%29%5CDelta%20x%20%3D%20o%28%5CDelta%20x%29.%0A&id=wtQDY)

    这种与例(2)中居中的方程等价的形式。 我们可以得到与二次函数类似的结论。陈述如下:

    对正弦函数differential-1 - 图43, 当横坐标从differential-1 - 图44变化到differential-1 - 图45时,differential-1 - 图46中占了大头的量是differential-1 - 图47. 正弦函数differential-1 - 图48在点differential-1 - 图49)#card=math&code=P%28a%2C%20f%28a%29%29&id=lxPTu)处的切线是differential-1 - 图50%3Df(a)%2B%5Ccos%20a%20%5Ccdot%20(x-a)#card=math&code=L%28x%29%3Df%28a%29%2B%5Ccos%20a%20%5Ccdot%20%28x-a%29&id=tyP7P). 如果在点differential-1 - 图51附近,用differential-1 - 图52#card=math&code=L%28x%29&id=ZJGb3)代替正弦函数differential-1 - 图53, 那么函数值的变化是differential-1 - 图54-L(P)%3DL(a%2Bh)-L(a)%3D%5Ccos%20a%20%5Ccdot%20h#card=math&code=L%28Q%29-L%28P%29%3DL%28a%2Bh%29-L%28a%29%3D%5Ccos%20a%20%5Ccdot%20h&id=yhWW1). 由于当differential-1 - 图55很小时,differential-1 - 图56是等价无穷小量,我们可以写 differential-1 - 图57#card=math&code=%5CDelta%20y%20%3D%20%5Ccos%20a%20%5Ccdot%20h%20%2B%20o%28h%29&id=Y4Jxw), 即如同方程(2)的形式。


    以上例子中,函数值的变化differential-1 - 图58,其主要部分(占了大头的量),是differential-1 - 图59的一次函数。(因为differential-1 - 图60更高次的项,已经很小)。这表明,如果在点differential-1 - 图61附近,用过differential-1 - 图62的切线代替原来函数的图像,当横坐标从differential-1 - 图63变成differential-1 - 图64时,differential-1 - 图65的主要部分与differential-1 - 图66-L(a)#card=math&code=L%28a%2Bh%29-L%28a%29&id=CFxoi)相等。这启发我们给出下面的

    定义:我们说函数differential-1 - 图67#card=math&code=y%3Df%28x%29&id=kQ0kS)在differential-1 - 图68可微,是指当differential-1 - 图69变成differential-1 - 图70时,有一个与differential-1 - 图71无关的常数differential-1 - 图72,使得

    differential-1 - 图73-f(x)%20-%20k%20%5CDelta%20x%20%3D%20o(%5CDelta%20x).%0A#card=math&code=%5CDelta%20y%20-%20k%5CDelta%20x%3D%20f%28x%2B%5CDelta%20x%29-f%28x%29%20-%20k%20%5CDelta%20x%20%3D%20o%28%5CDelta%20x%29.%0A&id=YTEh7)

    即,differential-1 - 图74differential-1 - 图75的无穷小量.


    当然,我们能看到这个事实,是基于differential-1 - 图76#card=math&code=y%3Df%28x%29&id=gNM2r) 的图像在点differential-1 - 图77)#card=math&code=P%28a%2C%20f%28a%29%29&id=nXRV1)处有切线,即先要假设differential-1 - 图78#card=math&code=y%3Df%28x%29&id=Jlrma)在differential-1 - 图79处可导。那么,函数differential-1 - 图80#card=math&code=y%3Df%28x%29&id=n4p6g)在differential-1 - 图81可微,与它在differential-1 - 图82可导,有何联系?上面的常数differential-1 - 图83,与differential-1 - 图84%2C%20a#card=math&code=f%28x%29%2C%20a&id=thxzm)又有何关系?下次再聊.