为什么数据处理很重要?

在数据项目中,数据处理相关的工作时间占据了整个项目大部分的时间。数据的质量,直接决定了模型的预测和泛化能力的好坏。在真实数据中,我们拿到的数据可能包含了大量的缺失值,可能包含大量的噪音,也可能因为人工录入错误导致有异常点存在,非常不利于算法模型的训练。数据清洗的结果是对各种脏数据进行对应方式的处理,得到标准的、干净的、连续的数据,提供给数据统计、数据挖掘等使用。

有哪些数据预处理的方法?

数据预处理的主要步骤分为:数据清理、数据集成、数据规约和数据变换。

数据清理

数据清理(data cleaning) 的主要思想是通过填补缺失值、光滑噪声数据,平滑或删除离群点,并解决数据的不一致性来“清理“数据。如果用户认为数据时脏乱的,他们不太会相信基于这些数据的挖掘结果,即输出的结果是不可靠的。

缺失值的处理

由于现实世界中,获取信息和数据的过程中,会存在各类的原因导致数据丢失和空缺。针对这些缺失值的处理方法,主要是基于变量的分布特性和变量的重要性(信息量和预测能力)采用不同的方法。

离群点处理

异常值是数据分布的常态,处于特定分布区域或范围之外的数据通常被定义为异常或噪声。异常分为两种:“伪异常”,由于特定的业务运营动作产生,是正常反应业务的状态,而不是数据本身的异常;“真异常”,不是由于特定的业务运营动作产生,而是数据本身分布异常,即离群点。

噪声处理

噪声是变量的随机误差和方差,是观测点和真实点之间的误差。通常的处理办法:对数据进行分箱操作,等频或等宽分箱,然后用每个箱的平均数,中位数或者边界值(不同数据分布,处理方法不同)代替箱中所有的数,起到平滑数据的作用。另外一种做法是,建立该变量和预测变量的回归模型,根据回归系数和预测变量,反解出自变量的近似值。

数据集成

数据分析任务多半涉及数据集成。数据集成将多个数据源中的数据结合成、存放在一个一致的数据存储,如数据仓库中。这些源可能包括多个数据库、数据方或一般文件。

  1. 实体识别问题:例如,数据分析者或计算机如何才能确信一个数 据库中的 customer_id 和另一个数据库中的 cust_number 指的是同一实体?通常,数据库和数据仓库 有元数据——关于数据的数据。这种元数据可以帮助避免模式集成中的错误。
  2. 冗余问题。一个属性是冗余的,如果它能由另一个表“导出”;如年薪。属性或 维命名的不一致也可能导致数据集中的冗余。 用相关性检测冗余:数值型变量可计算相关系数矩阵,标称型变量可计算卡方检验。
  3. 数据值的冲突和处理:不同数据源,在统一合并时,保持规范化,去重。

    数据规约

    数据规约技术可以用来得到数据集的归约表示,它小得多,但仍接近地保持原数据的完整性。 这样,在归约后的数据集上挖掘将更有效,并产生相同(或几乎相同)的分析结果。一般有如下策略:

    维度规约

    用于数据分析的数据可能包含数以百计的属性,其中大部分属性与挖掘任务不相关,是冗余的。维度归约通过删除不相关的属性,来减少数据量,并保证信息的损失最小。

    维度变换

    维度变换是将现有数据降低到更小的维度,尽量保证数据信息的完整性。

    数据变换

    数据变换包括对数据进行规范化,离散化,稀疏化处理,达到适用于挖掘的目的。
    规范化处理:数据中不同特征的量纲可能不一致,数值间的差别可能很大,不进行处理可能会影响到数据分析的结果,因此,需要对数据按照一定比例进行缩放,使之落在一个特定的区域,便于进行综合分析。特别是基于距离的挖掘方法,聚类,KNN,SVM一定要做规范化处理。
    离散化处理:数据离散化是指将连续的数据进行分段,使其变为一段段离散化的区间。分段的原则有基于等距离、等频率或优化的方法。
    稀疏化处理:针对离散型且标称变量,无法进行有序的LabelEncoder时,通常考虑将变量做0,1哑变量的稀疏化处理,例如动物类型变量中含有猫,狗,猪,羊四个不同值,将该变量转换成is猪,is猫,is狗,is羊四个哑变量。若是变量的不同值较多,则根据频数,将出现次数较少的值统一归为一类’rare’。稀疏化处理既有利于模型快速收敛,又能提升模型的抗噪能力。

数据预处理方法介绍

缺失值处理方法分类

均值插入法

根据不同的情况,采用不同的缺失值处理办法。如对于缺失值比例高于30%的样本进行特定方法(如删除)处理(去除,替换等)。

常值插入法

对数据集的缺失数据值填充特定的常用值,以维持数据集的基本结构与分布,同时最大限度地保留与利用数据集信息。

极端值处理方法分类

绝对值过大剔除法

使用历史数据替换

附参考资料:
整理一份详细的数据预处理方法
数据预处理-方法汇总
数据挖掘-概念与技术