HTTP 包头包含哪些信息

HTTP 是一个传递额外信息的键值对。 分为通用头部,请求头部,响应头部和实体头部。

通用头部

是客户端和服务器都可以使用的头部,可以在客户端、服务器和其他应用程序之间提供一些非常有用的通用功能,如Date头部
截屏2022-01-20 下午10.10.35.png

请求头

是请求报文特有的,它们为服务器提供了一些额外信息,比如客户端希望接收什么类型的数据,如Accept头部。
截屏2022-01-20 下午10.13.32.png

响应头

便于客户端提供信息,比如,客服端在与哪种类型的服务器进行交互,如Server头部。
截屏2022-01-20 下午10.15.45.png

实体头

指的是用于应对实体主体部分的头部,比如,可以用实体头部来说明实体主体部分的数据类型,如Content-Type头部。
截屏2022-01-20 下午10.20.32.png

Keep Alive 和 非Keep Alive 的区别

  • 非Keep-alive:早期HTTP1.0,浏览器发起http请求需要与服务器建立新的TCP连接,请求处理后连接立即断开,重新请求重新连接。但每一个这样的连接,客户机和服务器都要分配 TCP 的缓冲区和变量,这给服务器带来的严重的负担。
  • Keep-alive:HTTP1.1默认持久连接,同一客户机可以连续请求通过相同的连接进行传送,一台服务器多个web页面也可通过单个TCP连接传送给同一个客户机。但长时间保持TCP连接会导致系统资源被无效占用。
  • 我们需要正确地设置 keep-alive timeout 参数,当 TCP 连接在传送完最后一个 HTTP 响应,该连接会保持 keepalive_timeout 秒,之后就开始关闭这个链接。

HTTP 长连接,短连接使用场景是什么

长连接:多用于操作频繁,点对点的通讯,而且客户端连接数目较少的情况。例如即时通讯、网络游戏等。
短连接:用户数目较多的Web网站的 HTTP 服务一般用短连接。例如京东,淘宝这样的大型网站一般客户端数量达到千万级甚至上亿,若采用长连接势必会使得服务端大量的资源被无效占用,所以一般使用的是短连接。

HTTP 的方法有哪些

HTTP/1.0 定义了三种请求方法:GET, POST 和 HEAD 方法
HTTP/1.1 增加了六种请求方法:OPTIONS, PUT, PATCH, DELETE, TRACE 和 CONNECT 方法。
connect: 服务器代理访问
options:返回支持的HTTP方法
trace:返回服务器收到的请求数据,用于测试和诊断
PATCH:批量更新
截屏2022-01-20 下午11.35.23.png

GET 和 POST 的区别

  • get 提交的数据会放在 URL 之后,并且请求参数会被完整的保留在浏览器的记录里,由于参数直接暴露在 URL 中,可能会存在安全问题,因此往往用于获取资源信息。而 post 参数放在请求主体中,并且参数不会被保留,相比 get 方法,post 方法更安全,主要用于修改服务器上的资源。
  • get 请求只支持 URL 编码,post 请求支持多种编码格式。
  • get 只支持 ASCII 字符格式的参数,而 post 方法没有限制。
  • get 提交的数据大小有限制(这里所说的限制是针对浏览器而言的),而 post 方法提交的数据没限制
  • get 方式需要使用 Request.QueryString 来取得变量的值,而 post 方式通过 Request.Form 来获取。
  • get 方法产生一个 TCP 数据包,post 方法产生两个(并不是所有的浏览器中都产生两个)。
  • 对于GET方法,浏览器会把http header 和 data 一起发送出去,服务端响应200, 请求成功
  • 对于POST方法,浏览器会首先发http header 给服务端,公诉服务端一会儿有数据发过来,服务端返回100continue,告诉浏览器我已经准备接收数据,浏览器再post发送一个data给服务端,服务端响应200,请求成功。

    HTTP 和 HTTPS 的工作方式

    HTTP

    HTTP(Hyper Text Transfer Protocol: 超文本传输协议) 是一种简单的请求 - 响应协议,被用于在 Web 浏览器和网站服务器之间传递消息。HTTP 使用 TCP(而不是 UDP)作为它的支撑运输层协议。其默认工作在 TCP 协议 80 端口,HTTP 客户机发起一个与服务器的 TCP 连接,一旦连接建立,浏览器和服务器进程就可以通过套接字接口访问 TCP。客户机从套接字接口发送 HTTP 请求报文和接收 HTTP 响应报文。类似地,服务器也是从套接字接口接收 HTTP 请求报文和发送 HTTP 响应报文。其通信内容以明文的方式发送,不通过任何方式的数据加密。当通信结束时,客户端与服务器关闭连接。

    HTTPS

    HTTPS(Hyper Text Transfer Protocol over Secure Socket Layer)是以安全为目标的 HTTP 协议,在 HTTP 的基础上通过传输加密和身份认证的方式保证了传输过程的安全性。
  1. 客户端发起一个 HTTPS 请求,并连接到服务器的 443 端口,发送的信息主要包括自身所支持的算法列表和密钥长度等。
  2. 服务端将自身所支持的所有加密算法与客户端的算法列表进行对比并选择一种支持的加密算法,然后将它和其它密钥组件一同发送给客户端。
  3. 服务器向客户端发送一个包含数字证书的报文,该数字证书中包含证书的颁发机构、过期时间、服务端的公钥等信息。
  4. 最后服务端发送一个完成报文通知客户端 SSL 的第一阶段已经协商完成。
  5. SSL 第一次协商完成后,客户端发送一个回应报文,报文中包含一个客户端生成的随机密码串,称为 pre_master_secre,并且该报文是经过证书中的公钥加密过的。
  6. 紧接着客户端会发送一个报文提示服务端在此之后的报文是采用pre_master_secre 加密的。
  7. 客户端向服务端发送一个 finish 报文,这次握手中包含第一次握手至今所有报文的整体校验值,最终协商是否完成取决于服务端能否成功解密。
  8. 服务端同样发送与第 ⑥ 步中相同作用的报文,已让客户端进行确认,最后发送 finish 报文告诉客户端自己能够正确解密报文。

当服务端和客户端的 finish 报文交换完成之后,SSL 连接就算建立完成了,之后就进行和 HTTP 相同的通信过程,唯一不同的是在 HTTP 通信过程中并不是采用明文传输,而是采用对称加密的方式,其中对称密钥已经在 SSL 的建立过程中协商好了。

HTTP 与 HTTPS 的区别

  • HTTP和HTTPS使用是不同的连接方式,前者是80 端口,后者是443 端口。
  • HTTP 是明文传输, 非对称加密,HTTPS 是加密的,安全性较好
  • HTTPS 需要CA,一般要收费。
  • HTTP 响应比HTTPS快,只需要TCP握手,HTTPS 除了 TCP三次握手外,还有一个SSL协商过程
  • HTTP 采用非对称加密,公钥加密,私钥解密。HTTPS 先非对称再对称加密

    客户端为什么信任第三方证书

    防篡改: 加密签名与原文签名对比。
    假设中间人篡改了证书原文,由于他没有 CA 机构的私钥,所以无法得到此时加密后的签名,因此无法篡改签名。客户端浏览器收到该证书后会发现原文和签名解密后的值不一致,则说明证书被中间人篡改,证书不可信,从而终止向服务器传输信息。

防证书调包:请求域名和证书域名。
上述过程说明证书无法被篡改,我们考虑更严重的情况,例如中间人拿到了 CA 机构认证的证书,它想窃取网站 A 发送给客户端的信息,于是它成为中间人拦截到了 A 传给客户端的证书,然后将其替换为自己的证书。此时客户端浏览器收到的是被中间人掉包后的证书,但由于证书里包含了客户端请求的网站信息,因此客户端浏览器只需要把证书里的域名与自己请求的域名比对一下就知道证书有没有被掉包了。

HTTP 是不保存状态的协议,如何保存用户状态

我们知道,假如某个特定的客户机在短时间内两次请求同一个对象,服务器并不会因为刚刚为该用户提供了该对象就不再做出反应,而是重新发送该对象,就像该服务器已经完全忘记不久之前所做过的是一样。因为一个 HTTP 服务器并不保存关于客户机的任何信息,所以我们说 HTTP 是一个无状态协议。
解决方案有两种:
① 基于 Session 实现的会话保持
在客户端第一次向服务器发送 HTTP 请求后,服务器会创建一个 Session 对象并将客户端的身份信息以键值对的形式存储下来,然后分配一个会话标识(SessionId)给客户端,这个会话标识一般保存在客户端 Cookie 中,之后每次该浏览器发送 HTTP 请求都会带上 Cookie 中的 SessionId 到服务器,服务器根据会话标识就可以将之前的状态信息与会话联系起来,从而实现会话保持。

优点:安全性高,因为状态信息保存在服务器端。
缺点:由于大型网站往往采用的是分布式服务器,浏览器发送的 HTTP 请求一般要先通过负载均衡器才能到达具体的后台服务器,倘若同一个浏览器两次 HTTP 请求分别落在不同的服务器上时,基于 Session 的方法就不能实现会话保持了。

解决方案:采用中间件,例如redis,将session的信息存储再redis中,当服务器在本地查不到的时候就会去redis中查。

② 基于 Cookie 实现的会话保持
当服务器发送响应消息时,在 HTTP 响应头中设置 Set-Cookie 字段,用来存储客户端的状态信息。客户端解析出 HTTP 响应头中的字段信息,并根据其生命周期创建不同的 Cookie,这样一来每次浏览器发送 HTTP 请求的时候都会带上 Cookie 字段,从而实现状态保持。基于 Cookie 的会话保持与基于 Session 实现的会话保持最主要的区别是前者完全将会话状态信息存储在浏览器 Cookie 中

优点:服务器不用保存状态信息, 减轻服务器存储压力,同时便于服务端做水平拓展
缺点:该方式不够安全,因为状态信息存储在客户端,这意味着不能在会话中保存机密数据。除此之外,浏览器每次发起 HTTP 请求时都需要发送额外的 Cookie 到服务器端,会占用更多带宽。

拓展:cookie 被禁用了怎么办
若遇到 Cookie 被禁用的情况,则可以通过重写 URL 的方式将会话标识放在 URL 的参数里,也可以实现会话保持。

状态码

HTTP 状态码共有5种类型
截屏2022-01-21 下午2.59.38.png
状态码列表:
需要记住200, 201, 301(永久重定向,URI改变), 302(临时重定向,URI不变),307(临时重定向,URI 改变), 400(bad request), 401(Unauthorized),403(服务器拒绝访问),404(请求失败,资源未在服务器上发现),405(客户端的方法被禁止),500, 502(bad gateway),505(HTTP version not supported)。
截屏2022-01-21 下午3.25.36.png
截屏2022-01-21 下午3.29.37.png

截屏2022-01-21 下午3.27.36.png
截屏2022-01-21 下午3.28.04.png
截屏2022-01-21 下午3.28.57.png

HTTP1.1 和 HTTP1.0 的区别

  • 在 HTTP/1.0 中主要使用 header 里的 if-modified-Since, Expries 来做缓存判断的标准。而 HTTP/1.1 请求头中添加了更多与缓存相关的字段,从而支持更为灵活的缓存策略,例如 Entity-tag, If-Unmodified-Since, If-Match, If-None-Match 等可供选择的缓存头来控制缓存策略
  • 节约带宽: 当客户端请求某个资源时,HTTP/1.0 默认将该资源相关的整个对象传送给请求方,但很多时候可能客户端并不需要对象的所有信息。而在 HTTP/1.1 的请求头中引入了 range 头域,它允许只请求部分资源,其使得开发者可以多线程请求某一资源,从而充分的利用带宽资源,实现高效并发
  • 错误通知的管理:HTTP/1.1 在 1.0 的基础上新增了 24 个错误状态响应码,例如 414 表示客户端请求中所包含的 URL 地址太长,以至于服务器无法处理;410 表示所请求的资源已经被永久删除。
  • Host 请求头:早期 HTTP/1.0 中认为每台服务器都绑定一个唯一的 IP 地址并提供单一的服务,请求消息中的 URL 并没有传递主机名。而随着虚拟主机的出现,一台物理服务器上可以存在多个虚拟主机,并且它们共享同一个 IP 地址。为了支持虚拟主机,HTTP/1.1 中添加了 host 请求头,请求消息和响应消息中应声明这个字段,若请求消息中缺少该字段时服务端会响应一个 404 错误状态码。
  • 长连接:HTTP/1.0 默认浏览器和服务器之间保持短暂连接,浏览器的每次请求都需要与服务器建立一个 TCP 连接,服务器完成后立即断开 TCP 连接。HTTP/1.1 默认使用的是持久连接,其支持在同一个 TCP 请求中传送多个 HTTP 请求和响应。此之前的 HTTP 版本的默认连接都是使用非持久连接,如果想要在旧版本的 HTTP 协议上维持持久连接,则需要指定 Connection 的首部字段的值为 Keep-Alive。

    HTTP1.x 和 HTTP2.0 的区别

  • 二进制传送:之前版本 数据都是用文本传输,因为文本有多种格式,所以不能很好地适应所有场景; 2.0传送的是二进制,相当于统一了格式

  • 多路复用:1.1虽然默认复用TCP连接,但是每个请求是串行执行的,如果前面的请求超时,后面的请求只能等着(也就是线头阻塞); 2.0的时候每个请求有自己的ID,多个请求可以在同一个TCP连接上并行执行,不会互相影响。
  • header压缩:每次进行HTTP请求响应的时候,头部里很多的字段都是重复的,在2.0中,将字段记录到一张表中,头部只需要存放字段对应的编号就行,用的时候只需要拿着编号去表里查找就行,减少了传输的数据量
  • 服务端推送:服务器会在客户端没发起请求的时候主动推送一些需要的资源,比如客户端请求一个html文件,服务器发送完之后会把和这个html页面相关的静态文件也发送给客户端,当客户端准备向服务器请求静态文件的时候,就可以直接从缓存中获取,就不需要再发起请求了。

    HTTP/3 了解吗

    HTTP2 存在的问题

    我们知道,传统 Web 平台的数据传输都基于 TCP 协议,而 TCP 协议在创建连接之前不可避免的需要三次握手,如果需要提高数据交互的安全性,即增加传输层安全协议(TLS),还会增加更多的握手次数。 HTTP 从 1.0 到 2.0,其传输层都是基于 TCP 协议的。即使是带来巨大性能提升的 HTTP/2,也无法完全解决 TCP 协议存在的固有问题(慢启动,拥塞窗口尺寸的设置等)。此外,HTTP/2 多路复用只是减少了连接数,其队头的拥塞问题并没有完全解决,倘若 TCP 丢包率过大,则 HTTP/2 的表现将不如 HTTP/1.1

    QUIC 协议

    QUIC (Quick UDP Internet connections), 直译为快速UDP连接,是谷歌制定的一种基于 UDP 的低延迟传输协议。其主要目的是解决采用传输层 TCP 协议存在的问题,同时满足传输层和应用层对多连接、低延迟等的需求。该协议融合了 TCP, TLS, HTTP/2 等协议的特性,并基于 UDP传输。该协议带来的主要提升有

  • 低延迟连接。当客户端第一次连接服务器时,QUIC 只需要 1 RTT(Round-Trid Time)延迟就可以建立安全可靠的连接(采用 TLS 1.3 版本),相比于 TCP + TLS 的 3 次 RTT 要更加快捷。之后,客户端可以在本地缓存加密的认证信息,当再次与服务器建立连接时可以实现 0 RTT 的连接建立延迟

  • QUIC 复用了 HTTP/2 协议的多路复用功能,由于 QUIC 基于 UDP,所以也避免了 HTTP/2存在的队头阻塞问题。
  • 基于 UDP 协议的 QUIC 运行在用户域而不是系统内核,这使得 QUIC 协议可以快速的更新和部署,从而很好地解决了 TPC 协议部署及更新的困难。
  • QUIC 的报文是经过加密和认证的,除了少量的报文,其它所有的 QUIC 报文头部都经过了认证,报文主体经过了加密。只要有攻击者篡改 QUIC 报文,接收端都能及时发现。
  • 具有向前纠错机制,每个数据包携带了除了本身内容外的部分其他数据包的内容,使得在出现少量丢包的情况下,尽量地减少其它包的重传次数,其通过牺牲单个包所携带的有效数据大小换来更少的重传次数,这在丢包数量较小的场景下能够带来一定程度的性能提升。

HTTP/3

HTTP/3 是在 QUIC 基础上发展起来的,其底层使用 UDP 进行数据传输,上层仍然使用 HTTP/2。在 UDP 与 HTTP/2 之间存在一个 QUIC 层,其中 TLS 加密过程在该层进行处理。HTTP/3 主要有以下几个特点:
① 使用 UDP 作为传输层进行通信。
② 在 UDP 之上的 QUIC 协议保证了 HTTP/3 的安全性。QUIC 在建立连接的过程中就完成了 TLS 加密握手。
③ 建立连接快,正常只需要 1 RTT 即可建立连接。如果有缓存之前的会话信息,则直接验证和建立连接,此过程 0 RTT。建立连接时,也可以带有少量业务数据;
④ 不和具体底层连接绑定,QUIC 为每个连接的两端分别分配了一个唯一 ID,上层连接只认这对逻辑 ID。网络切换或者断连时,只需要继续发送数据包即可完成连接的建立;
⑤ 使用 QPACK 进行头部压缩,因为 在 HTTP/2 中的 HPACK 要求传输过程有序,这会导致队头阻塞,而 QPACK 不存在这个问题。
image.png

补充知识

TCP 为什么慢

  1. 三次握手
  2. 防止拥塞慢启动
  3. 丢包导致的队头阻塞

QUICK为啥快

  1. 减少往返次数RTT,缩短连接建立时间,缓存对方信息
  2. 连接采用多路复用,且采用独立数据流避免丢包阻塞
  3. 使用前行纠错恢复丢失的包,减少超时重传
  4. 连接保存连接标志符,网络迁移连接快

    URI 和 URL 有什么区别

    URL 即统一资源定位符。 URI 唯一标识了网络上的资源,URL在URI的基础上提供了资源的访问服务。

DNS 的作用和原理

Domain Name System, 用于将域名转为IP地址,用于TCP/IP 网络

DNS 域名解析原理

DNS 采用了分布式的设计方案,其域名空间采用一种树形的层次结构:
image.png
上图展示了 DNS 服务器的部分层次结构,从上到下依次为根域名服务器、顶级域名服务器和权威域名服务器。其实根域名服务器在因特网上有13个,大部分位于北美洲。第二层为顶级域服务器,这些服务器负责顶级域名(如 com、org、net、edu)和所有国家的顶级域名(如uk、fr、ca 和 jp)。在第三层为权威 DNS 服务器,因特网上具有公共可访问主机(例如 Web 服务器和邮件服务器)的每个组织机构必须提供公共可访问的 DNS 记录,这些记录由组织机构的权威 DNS 服务器负责保存,这些记录将这些主机的名称映射为 IP 地址。

除此之外,还有一类重要的 DNS 服务器,叫做本地 DNS 服务器。本地 DNS 服务器严格来说不在 DNS 服务器的层次结构中,但它对 DNS 层次结构是很重要的。一般来说,每个网络服务提供商(ISP) 都有一台本地 DNS 服务器。当主机与某个 ISP 相连时,该 ISP 提供一台主机的 IP 地址,该主机具有一台或多台其本地 DNS 服务器的 IP 地址。主机的本地 DNS 服务器通常和主机距离较近,当主机发起 DNS 请求时,该请求被发送到本地 DNS 服务器,它起着代理的作用,并将该请求转发到 DNS 服务器层次结构中。

我们以一个例子来了解 DNS 的工作原理,假设主机 A(IP 地址为 abc.xyz.edu) 想知道主机 B 的 IP 地址 (def.mn.edu),如下图所示,主机 A 首先向它的本地 DNS 服务器发送一个 DNS 查询报文。该查询报文含有被转换的主机名 def.mn.edu。本地 DNS 服务器将该报文转发到根 DNS 服务器,根 DNS 服务器注意到查询的 IP 地址前缀为 edu 后向本地 DNS 服务器返回负责 edu 的顶级域名服务器的 IP 地址列表。该本地 DNS 服务器则再次向这些 顶级域名服务器发送查询报文。该顶级域名服务器注意到 mn.edu 的前缀,并用权威域名服务器的 IP 地址进行响应。通常情况下,顶级域名服务器并不总是知道每台主机的权威 DNS 服务器的 IP 地址,而只知道中间的某个服务器,该中间 DNS 服务器依次能找到用于相应主机的 IP 地址,我们假设中间经历了权威服务器 ① 和 ②,最后找到了负责 def.mn.edu 的权威 DNS 服务器 ③,之后,本地 DNS 服务器直接向该服务器发送查询报文从而获得主机 B 的IP 地址。
image.png

递归查询与迭代查询

DNS 为什么使用UDP

正确答案是既使用TCP也使用UDP。
当进行区域传送(主域名服务器向辅助域名服务器传送变化的那部分数据)时会使用 TCP,因为数据同步传送的数据量比一个请求和应答的数据量要多,而 TCP 允许的报文长度更长,因此为了保证数据的正确性,会使用基于可靠连接的 TCP。
当客户端向 DNS 服务器查询域名 ( 域名解析) 的时候,一般返回的内容不会超过 UDP 报文的最大长度,即 512 字节。用 UDP 传输时,不需要经过 TCP 三次握手的过程,从而大大提高了响应速度,但这要求域名解析器和域名服务器都必须自己处理超时和重传从而保证可靠性。

怎么实现DNS 劫持

DNS 劫持即域名劫持,是通过将原域名对应的 IP 地址进行替换从而使得用户访问到错误的网站或者使得用户无法正常访问网站的一种攻击方式。域名劫持往往只能在特定的网络范围内进行,范围外的 DNS 服务器能够返回正常的 IP 地址。攻击者可以冒充原域名所属机构,通过电子邮件的方式修改组织机构的域名注册信息,或者将域名转让给其它组织,并将新的域名信息保存在所指定的 DNS 服务器中,从而使得用户无法通过对原域名进行解析来访问目的网址。
具体实施步骤如下:
① 获取要劫持的域名信息:攻击者首先会访问域名查询站点查询要劫持的域名信息
② 控制域名相应的 E-MAIL 账号:在获取到域名信息后,攻击者通过暴力破解或者专门的方法破解公司注册域名时使用的 E-mail 账号所对应的密码。更高级的攻击者甚至能够直接对 E-mail 进行信息窃取。
③ 修改注册信息:当攻击者破解了 E-MAIL 后,会利用相关的更改功能修改该域名的注册信息,包括域名拥有者信息,DNS 服务器信息等。
④ 使用 E-MAIL 收发确认函:在修改完注册信息后,攻击者在 E-mail 真正拥有者之前收到修改域名注册信息的相关确认信息,并回复确认修改文件,待网络公司恢复已成功修改信件后,攻击者便成功完成 DNS 劫持

解决方案:

  • 直接通过 IP 地址访问网站,避开 DNS 劫持。
  • 由于域名劫持往往只能在特定的网络范围内进行,因此一些高级用户可以通过网络设置让 DNS 指向正常的域名服务器以实现对目的网址的正常访问,例如将计算机首选 DNS 服务器的地址固定为 8.8.8.8。

Sockets 套接字有哪些

套接字(Socket)是对网络中不同主机上的应用进程之间进行双向通信的端点的抽象,网络进程通信的一端就是一个套接字,不同主机上的进程便是通过套接字发送报文来进行通信。例如 TCP 用主机的 IP 地址 + 端口号作为 TCP 连接的端点,这个端点就叫做套接字
Socket 主要有以下三种类型:

  • 流套接字(SOCK_STREAM):流套接字基于 TCP 传输协议,主要用于提供面向连接、可靠的数据传输服务。由于 TCP 协议的特点,使用流套接字进行通信时能够保证数据无差错、无重复传送,并按顺序接收,通信双方不需要在程序中进行相应的处理。
  • 数据报套接字(SOCK_DGRAM):和流套接字不同,数据报套接字基于 UDP 传输协议,对应于无连接的 UDP 服务应用。该服务并不能保证数据传输的可靠性,也无法保证对端能够顺序接收到数据。此外,通信两端不需建立长时间的连接关系,当 UDP 客户端发送一个数据给服务器后,其可以通过同一个套接字给另一个服务器发送数据。当用 UDP 套接字时,丢包等问题需要在程序中进行处理。
  • 原始套接字(SOCK_RAW):由于流套接字和数据报套接字只能读取 TCP 和 UDP 协议的数据,当需要传送非传输层数据包(例如 Ping 命令时用的 ICMP 协议数据包)或者遇到操作系统无法处理的数据包时,此时就需要建立原始套接字来发送。

如果一个网站的访问速度很慢,怎么排查问题

① 首先最直接的方法是查看本地网络是否正常,可以通过网络测速软件例如电脑管家等对电脑进行测速,若网速正常,我们查看网络带宽是否被占用,例如当你正在下载电影时并且没有限速,是会影响你打开网页的速度的,这种情况往往是处理器内存小导致的
② 当网速测试正常时,我们对网站服务器速度进行排查,通过 ping 命令查看链接到服务器的时间和丢包等情况,一个速度好的机房,首先丢包率不能超过 1%,其次 ping 值要小,最后是 ping 值要稳定,如最大和最小差值过大说明路由不稳定。或者我们也可以查看同台服务器上其他网站的打开速度,看是否其他网站打开也慢。
③ 如果网页打开的速度时快时慢,甚至有时候打不开,有可能是空间不稳定的原因。当确定是该问题时,就要找你的空间商解决或换空间商了,如果购买空间的话,可选择购买购买双线空间或多线空间;如果是在有的地方打开速度快,有的地方打开速度慢,那应该是网络线路的问题。电信线路用户访问放在联通服务器的网站,联通线路用户访问放在电信服务器上的网站,相对来说打开速度肯定是比较慢。
④ 从网站本身找原因。网站的问题主要包括网站程序设计、网页设计结构和网页内容三个部分。

网站程序设计:当访问网页中有拖慢网站打开速度的代码,会影响网页的打开速度,例如网页中的统计代码,我们最好将其放在网站的末尾。因此我们需要查看网页程序的设计结构是否合理;
网页设计结构:如果是 table 布局的网站,查看是否嵌套次数太多,或是一个大表格分成多个表格这样的网页布局,此时我们可以采用 div 布局并配合 css 进行优化。
网页内容:查看网页中是否有许多尺寸大的图片或者尺寸大的 flash 存在,我们可以通过降低图片质量,减小图片尺寸,少用大型 flash 加以解决。此外,有的网页可能过多地引用了其他网站的内容,若某些被引用的网站访问速度慢,或者一些页面已经不存在了,打开的速度也会变慢。一种直接的解决方法是去除不必要的加载项

从输入网址到解析网页的过程

image.png

数据抓包的过程

假如我们需要抓取客户端的数据包,需要监控客户端与服务器交互之间的网络节点,监控其中任意一个网络节点(网卡),获取所有经过网卡中的数据,对这些数据按照网络协议进行解析,这就是抓包的基本原理。而中间的网络节点不受我们控制,是基本无法实现抓包的,因此只能在客户端与服务器之间进行抓包。
① 当采用抓包工具抓取 HTTP 数据包时,过程较为简单:

  • 首先抓包工具会提出代理服务,客户端需要连接该代理;
  • 客户端发出 HTTP 请求时,会经过抓包工具的代理,抓包工具将请求的原文进行展示;
  • 抓包工具使用该原文将请求发送给服务器;
  • 服务器返回结果给抓包工具,抓包工具将返回结果进行展示;
  • 抓包工具将服务器返回的结果原样返回给客户端。

这里抓包工具相当于透明人,数据经过的时候它一只手接到数据,然后另一只手把数据传出去。

② 当抓取 HTTPS 数据包时:

  • 客户端连接抓包工具提供的代理服务,并安装抓包工具的根证书;
  • 客户端发出 HTTPS 请求,抓包工具模拟服务器与客户端进行 TLS 握手交换密钥等流程;
  • 抓包工具发送一个 HTTPS 请求给客户端请求的目标服务器,并与目标服务器进行 TLS 握手交换密钥等流程;
  • 客户端使用与抓包工具协定好的密钥加密数据后发送给抓包工具;
  • 抓包工具使用与客户端协定好的密钥解密数据,并将结果进行展示;
  • 抓包工具将解密后的客户端数据,使用与服务器协定好的密钥进行加密后发送给目标服务器;
  • 服务器解密数据后,做对应的逻辑处理,然后将返回结果使用与抓包工具协定好的密钥进行加密发送给抓包工具;
  • 抓包工具将服务器返回的结果,用与服务器协定好的密钥解密,并将结果进行展示;
  • 抓包工具将解密后的服务器返回数据,使用与客户端协定好的密钥进行加密后发送给客户端;
  • 客户端解密数据

这个时候抓包工具对客户端来说相当于服务器,对服务器来说相当于客户端。在这个传输过程中,客户端会以为它就是目标服务器,服务器也会以为它就是请求发起的客户端。