分库分表

为什么要分库分表

数据库中的数据量不一定是可控的,随着时间和业务的发展,库中的表会越来越多,表中的数据量也会越来越大,相应地数据操作,例如 增删改查的开销 也会越来越大;另外,若不进行分布式部署,而一台服务器的 资源 (CPU、磁盘、内存、IO 等)是有限的,最终数据库所能承载的数据量、数据处理能力都将遭遇瓶颈。所以,从 性能 和 可用性 角度考虑,会进行数据库拆分处理,具体地说,把原本存储于一个库的数据分块存储到多个库上,把原本存储于一个表的数据分块存储到多个表上,即 分库分表。
截屏2022-01-19 下午2.08.16.png

水平切分

水平切分又称为 Sharding,它是将同一个表中的记录拆分到多个结构相同的表中。当一个表的数据不断增多时,Sharding 是必然的选择,它可以将数据分布到集群的不同节点上,从而缓存单个数据库的压力。
image.png

垂直切分

image.png
垂直切分是将一张表按列切分成多个表,通常是按照列的关系密集程度进行切分,也可以利用垂直切分将经常被使用的列和不经常被使用的列切分到不同的表中。
在数据库的层面使用垂直切分将按数据库中表的密集程度部署到不同的库中,例如将原来的电商数据库垂直切分成商品数据库、用户数据库等

分库分表存在哪些问题

事务问题

分库分表后,就成了分布式事务。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。

跨库跨表的 JOIN 问题

在执行了分库分表之后,难以避免会将原本逻辑关联性很强的数据划分到不同的表、不同的库上,这时,表的关联操作将受到限制,我们无法 JOIN 位于不同分库的表,也无法 JOIN 分表粒度不同的表,结果原本一次查询能够完成的业务,可能需要多次查询才能完成。

额外的数据管理负担和数据运算压力

额外的数据管理负担,最为常见的是数据的 定位问题 和数据的 增删改查 的重复执行问题,这些都可以通过应用程序来解决,但必然会引起额外的逻辑运算。

sharding 策略

  • 哈希取模: hash(key) % NUM_DB
  • 范围: 可以是 ID 范围也可以是时间范围
  • 映射表: 使用单独的一个数据库来存储映射关系

sharding 存在的问题及解决方案

1. 事务问题

使用分布式事务来解决,比如 XA 接口

2. 链接

可以将原来的join 分解成多个单表查询,然后在用户程序中进行join

3. ID 唯一性

  • 使用全局唯一 ID: GUID
  • 为每个分片指定一个 ID 范围
  • 分布式 ID 生成器 (如 Twitter 的 Snowflake 雪花算法)

    主从复制与读写分离

    主从复制

    主要涉及三个线程: binlog 线程、I/O 线程和 SQL 线程。

  • binlog 线程 : 负责将主服务器上的数据更改写入二进制日志中。

  • I/O 线程 : 负责从主服务器上读取二进制日志,并写入从服务器的中继日志中。
  • SQL 线程 : 负责读取中继日志并重放其中的 SQL 语句。

image.png

读写分离

主服务器处理写操作以及实时性要求比较高的读操作,而从服务器处理读操作。
读写分离能提高性能的原因在于:

  • 主从服务器负责各自的读和写,极大程度缓解了锁的争用;
  • 从服务器可以使用 MyISAM,提升查询性能以及节约系统开销;
  • 增加冗余,提高可用性。

读写分离常用代理方式来实现,代理服务器接收应用层传来的读写请求,然后决定转发到哪个服务器。
image.png

MySql 实现读写分离的方案

MySQL 读写分离的实现方式主要基于 主从复制,通过 路由的方式 使应用对数据库的写请求只在 Master 上进行,读请求在 Slave 上进行。
具体有以下四种实现方案:

  • 方案一:基于 MySQL proxy 代理

在应用和数据库之间增加 代理层,代理层接收应用对数据库的请求,根据不同请求类型(即是读 read 还是写 write)转发到不同的实例,在实现读写分离的同时可以实现负载均衡。MySQL 的代理最常见的是 mysql-proxy、cobar、mycat、Atlas 等。

  • 方案二:基于应用内路由

基于应用内路由的方式即为在应用程序中实现,针对不同的请求类型去不同的实例执行 SQL。
具体实现可基于 spring 的 aop:用 aop 来拦截 spring 项目的 dao 层方法,根据方法名称就可以判断要执行的类型,进而动态切换主从数据源。

  • 方案三:基于 MySQL-Connector-Java 的 JDBC 驱动方式

Java 程序通过在连接 MySQL 的 JDBC 中配置主库与从库等地址,JDBC 会自动将读请求发送给从库,将写请求发送给主库,此外, MySQL 的 JDBC 驱动还能够实现多个从库的负载均衡。

  • 方案四:基于 sharding-jdbc 的方式

sharding-sphere 是强大的读写分离、分表分库中间件,sharding-jdbc 是 sharding-sphere 的核心模块。