第二章:面向对象
面向对象是程序中一个非常重要的思想,它被很多同学理解成了一个比较难,比较深奥的问题,其实不然。面向对象很简单,简而言之就是程序之中所有的操作都需要通过对象来完成。
举例来说:
- 操作浏览器要使用window对象
- 操作网页要使用document对象
- 操作控制台要使用console对象
一切操作都要通过对象,也就是所谓的面向对象,那么对象到底是什么呢?这就要先说到程序是什么,计算机程序的本质就是对现实事物的抽象,抽象的反义词是具体,比如:照片是对一个具体的人的抽象,汽车模型是对具体汽车的抽象等等。程序也是对事物的抽象,在程序中我们可以表示一个人、一条狗、一把枪、一颗子弹等等所有的事物。一个事物到了程序中就变成了一个对象。
在程序中所有的对象都被分成了两个部分数据和功能,以人为例,人的姓名、性别、年龄、身高、体重等属于数据,人可以说话、走路、吃饭、睡觉这些属于人的功能。数据在对象中被成为属性,而功能就被称为方法。所以简而言之,在程序中一切皆是对象。
1、类(class)
要想面向对象,操作对象,首先便要拥有对象,那么下一个问题就是如何创建对象。要创建对象,必须要先定义类,所谓的类可以理解为对象的模型,程序中可以根据类创建指定类型的对象,举例来说:可以通过Person类来创建人的对象,通过Dog类创建狗的对象,通过Car类来创建汽车的对象,不同的类可以用来创建不同的对象。
定义类:
```typescript class 类名 { 属性名: 类型;
constructor(参数: 类型){ this.属性名 = 参数; }
方法名(){ …. }
}
- 示例:
-
```typescript
class Person{
name: string;
age: number;
constructor(name: string, age: number){
this.name = name;
this.age = age;
}
sayHello(){
console.log(`大家好,我是${this.name}`);
}
}
- 使用类:
const p = new Person('孙悟空', 18);
p.sayHello();
2、面向对象的特点
- 封装
- 对象实质上就是属性和方法的容器,它的主要作用就是存储属性和方法,这就是所谓的封装
- 默认情况下,对象的属性是可以任意的修改的,为了确保数据的安全性,在TS中可以对属性的权限进行设置
- 只读属性(readonly):
- 如果在声明属性时添加一个readonly,则属性便成了只读属性无法修改
- TS中属性具有三种修饰符:
- public(默认值),可以在类、子类和对象中修改
- protected ,可以在类、子类中修改
- private ,可以在类中修改
示例:
- public
- ```typescript class Person{ public name: string; // 写或什么都不写都是public public age: number;
constructor(name: string, age: number){ this.name = name; // 可以在类中修改 this.age = age; }
sayHello(){ console.log(
大家好,我是${this.name}
); } }- public
class Employee extends Person{ constructor(name: string, age: number){ super(name, age); this.name = name; //子类中可以修改 } }
const p = new Person(‘孙悟空’, 18); p.name = ‘猪八戒’;// 可以通过对象修改
- protected
-
```typescript
class Person{
protected name: string;
protected age: number;
constructor(name: string, age: number){
this.name = name; // 可以修改
this.age = age;
}
sayHello(){
console.log(`大家好,我是${this.name}`);
}
}
class Employee extends Person{
constructor(name: string, age: number){
super(name, age);
this.name = name; //子类中可以修改
}
}
const p = new Person('孙悟空', 18);
p.name = '猪八戒';// 不能修改
- private
-
class Person{
private name: string;
private age: number;
constructor(name: string, age: number){
this.name = name; // 可以修改
this.age = age;
}
sayHello(){
console.log(`大家好,我是${this.name}`);
}
}
class Employee extends Person{
constructor(name: string, age: number){
super(name, age);
this.name = name; //子类中不能修改
}
}
const p = new Person('孙悟空', 18);
p.name = '猪八戒';// 不能修改
属性存取器
- 对于一些不希望被任意修改的属性,可以将其设置为private
- 直接将其设置为private将导致无法再通过对象修改其中的属性
- 我们可以在类中定义一组读取、设置属性的方法,这种对属性读取或设置的属性被称为属性的存取器
- 读取属性的方法叫做setter方法,设置属性的方法叫做getter方法
- 示例:
- ```typescript class Person{ private _name: string;
constructor(name: string){ this._name = name; }
get name(){ return this._name; }
set name(name: string){ this._name = name; }
}
const p1 = new Person(‘孙悟空’); console.log(p1.name); // 通过getter读取name属性 p1.name = ‘猪八戒’; // 通过setter修改name属性
- 静态属性
- 静态属性(方法),也称为类属性。使用静态属性无需创建实例,通过类即可直接使用
- 静态属性(方法)使用static开头
- 示例:
-
```typescript
class Tools{
static PI = 3.1415926;
static sum(num1: number, num2: number){
return num1 + num2
}
}
console.log(Tools.PI);
console.log(Tools.sum(123, 456));
- this
- 在类中,使用this表示当前对象
继承
- 继承时面向对象中的又一个特性
通过继承可以将其他类中的属性和方法引入到当前类中
- 示例:
- ```typescript class Animal{ name: string; age: number;
constructor(name: string, age: number){ this.name = name; this.age = age; } }
- 示例:
class Dog extends Animal{
bark(){
console.log(`${this.name}在汪汪叫!`);
}
}
const dog = new Dog(‘旺财’, 4); dog.bark();
- 通过继承可以在不修改类的情况下完成对类的扩展
- 重写
- 发生继承时,如果子类中的方法会替换掉父类中的同名方法,这就称为方法的重写
- 示例:
-
```typescript
class Animal{
name: string;
age: number;
constructor(name: string, age: number){
this.name = name;
this.age = age;
}
run(){
console.log(`父类中的run方法!`);
}
}
class Dog extends Animal{
bark(){
console.log(`${this.name}在汪汪叫!`);
}
run(){
console.log(`子类中的run方法,会重写父类中的run方法!`);
}
}
const dog = new Dog('旺财', 4);
dog.bark();
- 在子类中可以使用super来完成对父类的引用
- 抽象类(abstract class)
- 抽象类是专门用来被其他类所继承的类,它只能被其他类所继承不能用来创建实例
- ```typescript abstract class Animal{ abstract run(): void; bark(){ console.log(‘动物在叫~’); } }
class Dog extends Animals{ run(){ console.log(‘狗在跑~’); } }
- 使用abstract开头的方法叫做抽象方法,抽象方法没有方法体只能定义在抽象类中,继承抽象类时抽象方法必须要实现
<a name="62e34d94"></a>
## 3、接口(Interface)
接口的作用类似于抽象类,不同点在于接口中的所有方法和属性都是没有实值的,换句话说接口中的所有方法都是抽象方法。接口主要负责定义一个类的结构,接口可以去限制一个对象的接口,对象只有包含接口中定义的所有属性和方法时才能匹配接口。同时,可以让一个类去实现接口,实现接口时类中要保护接口中的所有属性。
- 示例(检查对象类型):
-
```typescript
interface Person{
name: string;
sayHello():void;
}
function fn(per: Person){
per.sayHello();
}
fn({name:'孙悟空', sayHello() {console.log(`Hello, 我是 ${this.name}`)}});
- 示例(实现)
- ```typescript interface Person{ name: string; sayHello():void; }
class Student implements Person{ constructor(public name: string) { }
sayHello() {
console.log('大家好,我是'+this.name);
}
}
- <br />
<a name="ef65ff09"></a>
## 4、泛型(Generic)
定义一个函数或类时,有些情况下无法确定其中要使用的具体类型(返回值、参数、属性的类型不能确定),此时泛型便能够发挥作用。
- 举个例子:
-
```typescript
function test(arg: any): any{
return arg;
}
- 上例中,test函数有一个参数类型不确定,但是能确定的时其返回值的类型和参数的类型是相同的,由于类型不确定所以参数和返回值均使用了any,但是很明显这样做是不合适的,首先使用any会关闭TS的类型检查,其次这样设置也不能体现出参数和返回值是相同的类型
- 使用泛型:
function test<T>(arg: T): T{
return arg;
}
这里的
<T>
就是泛型,T是我们给这个类型起的名字(不一定非叫T),设置泛型后即可在函数中使用T来表示该类型。所以泛型其实很好理解,就表示某个类型。那么如何使用上边的函数呢?
方式一(直接使用):
test(10)
使用时可以直接传递参数使用,类型会由TS自动推断出来,但有时编译器无法自动推断时还需要使用下面的方式
- 方式二(指定类型):
-
test<number>(10)
- 也可以在函数后手动指定泛型
- 可以同时指定多个泛型,泛型间使用逗号隔开:
- ```typescript
function test
(a: T, b: K): K{ return b; }
- ```typescript
function test
test
- 使用泛型时,完全可以将泛型当成是一个普通的类去使用
- 类中同样可以使用泛型:
-
```typescript
class MyClass<T>{
prop: T;
constructor(prop: T){
this.prop = prop;
}
}
- 除此之外,也可以对泛型的范围进行约束
- ```typescript interface MyInter{ length: number; }
function test
- 使用T extends MyInter表示泛型T必须是MyInter的子类,不一定非要使用接口类和抽象类同样适用。