System.gc()

  • 在默认情况下,通过System.gc()或者Runtime.getRuntime().gc()的调用,会显式触发Full GC,同时对老年代和新生代进行回收,尝试释放被丢弃对象占用的内存
  • 然而System.gc()调用附带一个免责声明,无法保证对垃圾收集器的调用(仅是提醒JVM的垃圾回收器执行GC,不确定是否立即GC)
  • JVM实现者可以通过system.gc()调用来决定JVM的GC行为。而一般情况下,垃圾回收应该是自动进行的,无须手动触发,否则就太过于麻烦了
  • System.runFinalization();强制调用 失去引用的对象的finalize()方法

    内存溢出与内存泄漏

    内存溢出(OOM)

    没有空闲内存,并且垃圾收集器也无法提供更多内存。
    这里面隐含着一层意思是,在抛出OutOfMemory异常之前,通常垃圾收集器会被触发,尽其所能去清理出空间。

  • 例如:在引用机制分析中,涉及到JVM会去尝试回收软引用指向的对象等。

  • java.nio.BIts.reserveMemory()方法中,我们能清楚的看到,System.gc()会被调用,以清理空间。

没有空闲内存,说明Java虚拟机的堆内存不够,原因有二:

  1. Java虚拟机的堆内存设置不够。
  2. 代码中创建了大量大对象,并且长时间不能被垃圾收集器收集(存在被引用)

    内存泄漏(Memory Leak)

    只有对象不会再被程序用到了,但是GC又不能回收他们的情况,才叫内存泄漏。

但实际情况很多时候一些不太好的实践(或疏忽)会导致对象的生命周期变得很长甚至导致OOM,也可以叫做宽泛意义上的「内存泄漏」。

尽管内存泄漏并不会立刻引起程序崩溃,但是一旦发生内存泄漏,程序中的可用内存就会被逐步蚕食,直至耗尽所有内存,最终出现OutOfMemory异常,导致程序崩溃。
垃圾回收的相关概念 - 图1

举例

  1. 单例模式

单例的声明周期和引用程序是一样长的,所以单例程序中,如果持有对外部对象的引用的话,那么这个外部对象是不能够被收回的,则会导致内存泄漏的产生。

  1. 一些提供close的资源未关闭导致内存泄漏
  • 数据库连接(dataSource.getConnection())
  • 网络连接(socket)
  • io连接

    Stop The World

    Stop The World,简称STW,指的是GC事件发生过程中,会产生应用程序的停顿。停顿产生时整个应用程序线程都会被暂停,没有任何响应,有点像卡死的感觉,这个停顿称为STW。

STW事件和采用哪款GC无关,所有的GC都有这个事件。
哪怕是G1也不能完全避免STW情况发生,只能说垃圾回收器越来越优秀,回收效率越来越高,尽可能地缩短了暂停时间。
STW是JVM在后台自动发起和自动完成的。在用户不可见的情况下,把用户正常的工作线程全部停掉。
开发中采用System.gc();会导致STW的发生。

垃圾回收的并行与并发

  • 串行(Serial)
    • 单线程执行。
    • 如果内存不够,则程序暂停,启动JVM垃圾回收器进行垃圾回收。回收完,再启动程序的线程。

垃圾回收的相关概念 - 图2

  • 并行(Parallel) :指多条垃圾收集线程并行工作,但此时用户线程仍处于等待状态。
    • 如ParNew、 Parallel Scavenge、 Parallel Old;

垃圾回收的相关概念 - 图3

  • 并发(Concurrent) :指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),垃圾回收线程在执行时不会停顿用户程序的运行。

垃圾回收的相关概念 - 图4

安全点与安全区域

安全点

程序执行时并非在所有地方都能停顿下来开始GC,只有在特定的位置才能停顿下来开始GC,这些位置称为「安全点(Safepoint)」

Safe Point的选择很重要,如果太少可能导致GC等待的时间太长,如果太频繁可能导致运行时的性能问题。大部分指令的执行时间都非常短暂,通常会根据「是否具有让程序长时间执行的特征」为标准。比如:选择些执行时间较长的指令作为Safe Point, 如方法调用、循环跳转和异常跳转等。

如何在GC发生时,检查所有线程都跑到最近的安全点停顿下来呢?

  • 抢先式中断: (目前没有虚拟机采用了)

首先中断所有线程。如果还有线程不在安全点,就恢复线程,让线程跑到安全点。

  • 主动式中断:

设置一个中断标志,各个线程运行到Safe Point的时候主动轮询这个标志,如果中断标志为真,则将自己进行中断挂起。

安全区域

安全区域是指在一段代码片段中,对象的引用关系不会发生变化,在这个区域中的任何位置开始GC都是安全的。

程序实际执行时:

  • 1、当用户线程运行到Safe Region的代码时,首先标识已经进入了Safe Region,如果这段时间内发生GC,JVM会忽略标识为Safe Region状态的用户线程即用户线程STW,等待JVM执行GC完毕;
  • 2、当用户线程即将离开Safe Region时, 会检查JVM是否已经完成GC,如果完成了,则用户线程继续运行,否则用户线程必须等待直到收到可以安全离开SafeRegion的信号为止;

    引用

    在JDK 1.2版之后,Java对引用的概念进行了扩充,将引用分为强引用(Strong Reference)、软引用(Soft Reference) 、弱引用(Weak Reference) 和虚引用(Phantom Reference) 4种,这4种引用强度依次逐渐减弱。
    除强引用外,其他3种引用均可以在java.lang.ref包中找到

    强引用:不回收

  • 在Java程序中,最常见的引用类型是强引用(普通系统99%以上都是强引用),也就是我们最常见的普通对象引用,也是默认的引用类型。

  • 当在Java语言中使用new操作符创建一个新的对象, 并将其赋值给一个变量的时候,这个变量就成为指向该对象的一个强引用。
  • 当在Java语言中使用new操作符创建一个新的对象, 并将其赋值给一个变量的时候,这个变量就成为指向该对象的一个强引用。
  • 强引用的对象是可触及的(可达的),垃圾收集器就永远不会回收掉被引用的对象。
  • 对于一个普通的对象,如果没有其他的引用关系,只要超过了引用的作用域或者显式地将相应(强)引用赋值为null,才可以当做垃圾被收集,当然具体回收时机还是要看垃圾收集策略。
  • 相对的,软引用、 弱引用和虚引用的对象是软可触及、弱可触及和虛可触及的,在一定条件下,都是可以被回收的。所以,强引用是造成Java内存泄漏的主要原因之一。

强引用具备以下特点

  • 强引用可以直接访问目标对象。
  • 强引用所指向的对象在任何时候都不会被系统回收,虚拟机宁愿抛出OOM异常,也不会回收强引用所指向对象。
  • 强引用可能导致内存泄漏。

    软引用:内存不足即回收

    在系统将要发生内存溢出之前,会把这些对象列入回收范围之中,以备进行第二次(第一次指的是回收了不可触及的垃圾对象)垃圾回收的时候回收它们。如果这次回收后还没有足够的内存,才会抛出内存溢出异常。

    弱引用:发现即回收

    被弱引用关联的对象只能生存到下一次垃圾收集之前。当垃圾收集器工作时,无论内存空间是否足够,都会回收掉被弱引用关联的对象。

软引用、弱引用都非常适合来保存那些可有可无的缓存数据。

虚引用:对象回收跟踪

一个对象是否有虛引用的存在,完全不会对其生存时 间构成影响,也无法通过虚引用来获得一个对象的实例。为一个对象设置虛引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知(回收跟踪)。

  1. object obj = new object();
  2. ReferenceQueue phantomQueue = new ReferenceQueue( ) ;
  3. PhantomReference<object> pf = new PhantomReference<object>(obj, phantomQueue);
  4. obj = null;