gin 概览
想弄清楚 gin, 需要弄明白以下几个问题:
- request数据是如何流转的
- gin框架到底扮演了什么角色
- 请求从gin流入net/http, 最后又是如何回到gin中
- gin的context为何能承担起来复杂的需求
- gin的路由算法
- gin的中间件是什么
- gin的Engine具体是个什么东西
- net/http的requeset, response都提供了哪些有用的东西
从gin的官方第一个demo入手.
package main
import "github.com/gin-gonic/gin"
func main() {
r := gin.Default()
r.GET("/ping", func(c *gin.Context) {
c.JSON(200, gin.H{
"message": "pong",
})
})
r.Run() // listen and serve on 0.0.0.0:8080
}
r.Run() 的源码:
func (engine *Engine) Run(addr ...string) (err error) {
defer func() { debugPrintError(err) }()
trustedCIDRs, err := engine.prepareTrustedCIDRs()
if err != nil {
return err
}
engine.trustedCIDRs = trustedCIDRs
address := resolveAddress(addr)
debugPrint("Listening and serving HTTP on %s\n", address)
err = http.ListenAndServe(address, engine)
return
}
看到开始调用的是 http.ListenAndServe(address, engine), 这个函数是net/http的函数, 然后请求数据就在net/http开始流转.
net/http 是如何建立 socket 的
先不使用gin, 直接使用net/http来处理http请求
func main() {
http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
w.Write([]byte("Hello World"))
})
if err := http.ListenAndServe(":8000", nil); err != nil {
fmt.Println("start http server fail:", err)
}
}
从图上可以看出, 不管server代码如何封装, 都离不开bind,listen,accept这些函数. 就从上面这个简单的demo入手查看源码.
注册路由
http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
w.Write([]byte("Hello World"))
})
这段代码是在注册一个路由及这个路由的handler到DefaultServeMux中
func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
DefaultServeMux.HandleFunc(pattern, handler)
}
/usr/local/go/src/net/http/server.go:2453
// Handle registers the handler for the given pattern.
// If a handler already exists for pattern, Handle panics.
func (mux *ServeMux) Handle(pattern string, handler Handler) {
mux.mu.Lock()
defer mux.mu.Unlock()
if pattern == "" {
panic("http: invalid pattern")
}
if handler == nil {
panic("http: nil handler")
}
if _, exist := mux.m[pattern]; exist {
panic("http: multiple registrations for " + pattern)
}
if mux.m == nil {
mux.m = make(map[string]muxEntry)
}
e := muxEntry{h: handler, pattern: pattern}
mux.m[pattern] = e
if pattern[len(pattern)-1] == '/' {
mux.es = appendSorted(mux.es, e)
}
if pattern[0] != '/' {
mux.hosts = true
}
}
可以看到这个路由注册太过简单了, 也就给gin, iris, echo等框架留下了扩展的空间, 后面详细说这个东西
服务监听及响应
上面路由已经注册到net/http了, 下面就该如何建立socket了, 以及最后又如何取到已经注册到的路由, 将正确的响应信息从handler中取出来返回给客户端
1.创建 socket
if err := http.ListenAndServe(":8000", nil); err != nil {
fmt.Println("start http server fail:", err)
}
func ListenAndServe(addr string, handler Handler) error {
server := &Server{Addr: addr, Handler: handler}
return server.ListenAndServe()
}
func (srv *Server) ListenAndServe() error {
if srv.shuttingDown() {
return ErrServerClosed
}
addr := srv.Addr
if addr == "" {
addr = ":http"
}
// 这里创建了socket,处理连接
ln, err := net.Listen("tcp", addr)
if err != nil {
return err
}
return srv.Serve(ln)
}
2.Accept 等待客户端链接
func (srv *Server) Serve(l net.Listener) error {
if fn := testHookServerServe; fn != nil {
fn(srv, l) // call hook with unwrapped listener
}
origListener := l
l = &onceCloseListener{Listener: l}
defer l.Close()
if err := srv.setupHTTP2_Serve(); err != nil {
return err
}
if !srv.trackListener(&l, true) {
return ErrServerClosed
}
defer srv.trackListener(&l, false)
baseCtx := context.Background()
if srv.BaseContext != nil {
baseCtx = srv.BaseContext(origListener)
if baseCtx == nil {
panic("BaseContext returned a nil context")
}
}
var tempDelay time.Duration // how long to sleep on accept failure
// 这里的ctx比较关键,它把srv装进了上下文,供后面使用
ctx := context.WithValue(baseCtx, ServerContextKey, srv)
for {
rw, err := l.Accept() // Accept接收连接
if err != nil { // Accept异常处理
select {
case <-srv.getDoneChan():
return ErrServerClosed
default:
}
if ne, ok := err.(net.Error); ok && ne.Temporary() {
if tempDelay == 0 {
tempDelay = 5 * time.Millisecond
} else {
tempDelay *= 2
}
if max := 1 * time.Second; tempDelay > max {
tempDelay = max
}
srv.logf("http: Accept error: %v; retrying in %v", err, tempDelay)
time.Sleep(tempDelay)
continue
}
return err
}
connCtx := ctx
if cc := srv.ConnContext; cc != nil {
connCtx = cc(connCtx, rw)
if connCtx == nil {
panic("ConnContext returned nil")
}
}
tempDelay = 0
c := srv.newConn(rw)
c.setState(c.rwc, StateNew, runHooks) // before Serve can return
go c.serve(connCtx) // 每个连接都会起一个go程去处理
}
}
可以看看srv.newConn干了啥
// Create new connection from rwc.
func (srv *Server) newConn(rwc net.Conn) *conn {
c := &conn{
server: srv,
rwc: rwc,
}
if debugServerConnections {
c.rwc = newLoggingConn("server", c.rwc)
}
return c
}
它比较简单,这里返回的conn 对net.Conn进行了一次包装, conn表示HTTP连接的服务器端
3. 提供回调接口 ServeHTTP
// Serve a new connection.
func (c *conn) serve(ctx context.Context) {
c.remoteAddr = c.rwc.RemoteAddr().String()
ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
defer func() {
if err := recover(); err != nil && err != ErrAbortHandler {
const size = 64 << 10
buf := make([]byte, size)
buf = buf[:runtime.Stack(buf, false)]
c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
}
if !c.hijacked() {
c.close()
c.setState(c.rwc, StateClosed, runHooks)
}
}()
// 如果是tls连接,要进行Handshake
if tlsConn, ok := c.rwc.(*tls.Conn); ok {
....
}
// HTTP/1.x from here on.
ctx, cancelCtx := context.WithCancel(ctx)
c.cancelCtx = cancelCtx
defer cancelCtx()
c.r = &connReader{conn: c}
c.bufr = newBufioReader(c.r)
c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
for {
w, err := c.readRequest(ctx)
if c.r.remain != c.server.initialReadLimitSize() {
// If we read any bytes off the wire, we're active.
c.setState(c.rwc, StateActive, runHooks)
}
// 读取数据失败的处理
if err != nil {
const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n"
switch {
case err == errTooLarge:
// Their HTTP client may or may not be
// able to read this if we're
// responding to them and hanging up
// while they're still writing their
// request. Undefined behavior.
const publicErr = "431 Request Header Fields Too Large"
fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
c.closeWriteAndWait()
return
case isUnsupportedTEError(err):
// Respond as per RFC 7230 Section 3.3.1 which says,
// A server that receives a request message with a
// transfer coding it does not understand SHOULD
// respond with 501 (Unimplemented).
code := StatusNotImplemented
// We purposefully aren't echoing back the transfer-encoding's value,
// so as to mitigate the risk of cross side scripting by an attacker.
fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s%sUnsupported transfer encoding", code, StatusText(code), errorHeaders)
return
case isCommonNetReadError(err):
return // don't reply
default:
if v, ok := err.(statusError); ok {
fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s: %s%s%d %s: %s", v.code, StatusText(v.code), v.text, errorHeaders, v.code, StatusText(v.code), v.text)
return
}
publicErr := "400 Bad Request"
fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
return
}
}
// Expect 100 Continue support
req := w.req
if req.expectsContinue() {
if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
// Wrap the Body reader with one that replies on the connection
req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
w.canWriteContinue.setTrue()
}
} else if req.Header.get("Expect") != "" {
w.sendExpectationFailed()
return
}
c.curReq.Store(w)
if requestBodyRemains(req.Body) {
registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
} else {
w.conn.r.startBackgroundRead()
}
serverHandler{c.server}.ServeHTTP(w, w.req) // 处理http请求
w.cancelCtx()
if c.hijacked() {
return
}
w.finishRequest()
if !w.shouldReuseConnection() {
if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
c.closeWriteAndWait()
}
return
}
c.setState(c.rwc, StateIdle, runHooks)
c.curReq.Store((*response)(nil))
if !w.conn.server.doKeepAlives() {
// We're in shutdown mode. We might've replied
// to the user without "Connection: close" and
// they might think they can send another
// request, but such is life with HTTP/1.1.
return
}
if d := c.server.idleTimeout(); d != 0 {
c.rwc.SetReadDeadline(time.Now().Add(d))
if _, err := c.bufr.Peek(4); err != nil {
return
}
}
c.rwc.SetReadDeadline(time.Time{})
}
}
func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
handler := sh.srv.Handler
if handler == nil {
// http.ListenAndServe(":8000", nil),当handler为nil时,默认用的是DefaultServeMux
handler = DefaultServeMux
}
if req.RequestURI == "*" && req.Method == "OPTIONS" {
handler = globalOptionsHandler{}
}
handler.ServeHTTP(rw, req)
}
4. 回调到实际要执行的 ServeHTTP
type Handler interface {
ServeHTTP(ResponseWriter, *Request)
}
我们已知handler其实就是DefaultServeMux,因此调用
func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
if r.RequestURI == "*" {
if r.ProtoAtLeast(1, 1) {
w.Header().Set("Connection", "close")
}
w.WriteHeader(StatusBadRequest)
return
}
h, _ := mux.Handler(r) // 这里在路由表中找到HandlerFunc
h.ServeHTTP(w, r)
}
最后再调用ServeHTTP
type HandlerFunc func(ResponseWriter, *Request)
// ServeHTTP calls f(w, r).
func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
f(w, r)
}
这基本是整个过程的代码了.
- ln, err := net.Listen(“tcp”, addr)做了初试化了socket, bind, listen的操作.
- rw, e := l.Accept()进行accept, 等待客户端进行连接
- go c.serve(ctx) 启动新的goroutine来处理本次请求. 同时主goroutine继续等待客户端连接, 进行高并发操作
- h, _ := mux.Handler(r) 获取注册的路由, 然后拿到这个路由的handler, 然后将处理结果返回给客户端
从这里也能够看出来, net/http基本上提供了全套的服务.
为什么会出现很多go框架
// Find a handler on a handler map given a path string.
// Most-specific (longest) pattern wins.
func (mux *ServeMux) match(path string) (h Handler, pattern string) {
// Check for exact match first.
v, ok := mux.m[path]
if ok {
return v.h, v.pattern
}
// Check for longest valid match. mux.es contains all patterns
// that end in / sorted from longest to shortest.
for _, e := range mux.es {
if strings.HasPrefix(path, e.pattern) {
return e.h, e.pattern
}
}
return nil, ""
}
这段函数可以看出来, 匹配规则过于简单, 当能匹配到路由的时候就返回其对应的handler, 当不能匹配到时就返回/. net/http的路由匹配根本就不符合 RESTful 的规则,遇到稍微复杂一点的需求时,这个简单的路由匹配规则简直就是噩梦。
所以基本所有的go框架干的最主要的一件事情就是重写net/http的route。我们直接说 gin就是一个 httprouter 也不过分, 当然gin也提供了其他比较主要的功能, 后面会一一介绍。
综述, net/http基本已经提供http服务的70%的功能, 那些号称贼快的go框架, 基本上都是提供一些功能, 让我们能够更好的处理客户端发来的请求. 如果你有兴趣的话,也可以基于 net/http 做一个 Go 框架出来。