千万量级数据中查询 10W 量级的数据 - 图1
目录
千万量级数据中查询 10W 量级的数据 - 图2

  • 前言
  • 初版设计方案
  • CK 分页查询
  • 使用ES Scroll Scan 优化深翻页
  • ES+Hbase 组合查询方案
  • RediSearch+RedisJSON 优化方案
  • 总结

千万量级数据中查询 10W 量级的数据 - 图3
前言
千万量级数据中查询 10W 量级的数据 - 图4

在开发中遇到一个业务诉求,需要在千万量级的底池数据中筛选出不超过 10W 的数据,并根据配置的权重规则进行排序、打散(如同一个类目下的商品数据不能连续出现 3 次)。下面对该业务诉求的实现,设计思路和方案优化进行介绍。

对“千万量级数据中查询 10W 量级的数据”设计了如下方案:

  • 多线程+CK 翻页方案
  • ES scroll scan 深翻页方案
  • ES+Hbase 组合方案
  • RediSearch+RedisJSON 组合方案



    **

    千万量级数据中查询 10W 量级的数据 - 图5
    初版设计方案
    千万量级数据中查询 10W 量级的数据 - 图6

整体方案设计为:

  • 先根据配置的「筛选规则」,从底池表中筛选出「目标数据」
  • 在根据配置的「排序规则」,对「目标数据」进行排序,得到「结果数据」

技术方案如下:

每天运行导数任务,把现有的千万量级的底池数据(Hive 表)导入到 Clickhouse 中,后续使用 CK 表进行数据筛选。

将业务配置的筛选规则和排序规则,构建为一个「筛选 + 排序」对象 SelectionQueryCondition。

从 CK 底池表取「目标数据」时,开启多线程,进行分页筛选,将获取到的「目标数据」存放到 result 列表中。

  1. //分页大小 默认 5000
  2. int pageSize = this.getPageSize();
  3. //页码数
  4. int pageCnt = totalNum / this.getPageSize() + 1;
  5. List<Map<String, Object>> result = Lists.newArrayList();
  6. List<Future<List<Map<String, Object>>>> futureList = new ArrayList<>(pageCnt);
  7. //开启多线程调用
  8. for (int i = 1; i <= pageCnt; i++) {
  9. //将业务配置的筛选规则和排序规则 构建为 SelectionQueryCondition 对象
  10. SelectionQueryCondition selectionQueryCondition = buildSelectionQueryCondition(selectionQueryRuleData);
  11. selectionQueryCondition.setPageSize(pageSize);
  12. selectionQueryCondition.setPage(i);
  13. futureList.add(selectionQueryEventPool.submit(new QuerySelectionDataThread(selectionQueryCondition)));
  14. }
  15. for (Future<List<Map<String, Object>>> future : futureList) {
  16. //RPC 调用
  17. List<Map<String, Object>> queryRes = future.get(20, TimeUnit.SECONDS);
  18. if (CollectionUtils.isNotEmpty(queryRes)) {
  19. // 将目标数据存放在 result 中
  20. result.addAll(queryRes);
  21. }
  22. }

④对目标数据 result 进行排序,得到最终的「结果数据」。

**

千万量级数据中查询 10W 量级的数据 - 图7
CK 分页查询
千万量级数据中查询 10W 量级的数据 - 图8

在「初版设计方案」章节的第 3 步提到了「从 CK 底池表取目标数据时,开启多线程,进行分页筛选」。此处对 CK 分页查询进行介绍。

①封装了 queryPoolSkuList 方法,负责从 CK 表中获得目标数据。该方法内部调用了 sqlSession.selectList 方法。

  1. public List<Map<String, Object>> queryPoolSkuList( Map<String, Object> params ) {
  2. List<Map<String, Object>> resultMaps = new ArrayList<>();
  3. QueryCondition queryCondition = parseQueryCondition(params);
  4. List<Map<String, Object>> mapList = lianNuDao.queryPoolSkuList(getCkDt(),queryCondition);
  5. if (CollectionUtils.isNotEmpty(mapList)) {
  6. for (Map<String,Object> data : mapList) {
  7. resultMaps.add(camelKey(data));
  8. }
  9. }
  10. return resultMaps;
  11. }
  1. // lianNuDao.queryPoolSkuList
  2. @Autowired
  3. @Qualifier("ckSqlNewSession")
  4. private SqlSession sqlSession;
  5. public List<Map<String, Object>> queryPoolSkuList( String dt, QueryCondition queryCondition ) {
  6. queryCondition.setDt(dt);
  7. queryCondition.checkMultiQueryItems();
  8. return sqlSession.selectList("LianNu.queryPoolSkuList",queryCondition);
  9. }

②sqlSession.selectList 方法中调用了和 CK 交互的 queryPoolSkuList 查询方法,部分代码如下:

  1. <select id="queryPoolSkuList" parameterType="com.jd.bigai.domain.liannu.QueryCondition" resultType="java.util.Map">
  2. select sku_pool_id,i
  3. tem_sku_id,
  4. skuPoolName,
  5. price,
  6. ...
  7. ...
  8. businessType
  9. from liannu_sku_pool_indicator_all
  10. where
  11. dt=#{dt}
  12. and
  13. <foreach collection="queryItems" separator=" and " item="queryItem" open=" " close=" " >
  14. <choose>
  15. <when test="queryItem.type == 'equal'">
  16. ${queryItem.field} = #{queryItem.value}
  17. </when>
  18. ...
  19. ...
  20. </choose>
  21. </foreach>
  22. <if test="orderBy == null">
  23. group by sku_pool_id,item_sku_id
  24. </if>
  25. <if test="orderBy != null">
  26. group by sku_pool_id,item_sku_id,${orderBy} order by ${orderBy} ${orderAd}
  27. </if>
  28. <if test="limitEnd != 0">
  29. limit #{limitStart},#{limitEnd}
  30. </if>
  31. </select>

③可以看到,在 CK 分页查询时,是通过 limit #{limitStart},#{limitEnd} 实现的分页。

limit 分页方案,在「深翻页」时会存在性能问题。初版方案上线后,在 1000W 量级的
底池数据中筛选 10W 的数据,最坏耗时会达到 10s~18s 左右。

**

千万量级数据中查询 10W 量级的数据 - 图9
使用 ES Scroll Scan 优化深翻页
千万量级数据中查询 10W 量级的数据 - 图10

对于 CK 深翻页时候的性能问题,进行了优化,使用 Elasticsearch 的 scroll scan 翻页方案进行优化。

| ES 的翻页方案

ES 翻页,有下面几种方案:

  • from + size 翻页
  • scroll 翻页
  • scroll scan 翻页
  • search after 翻页

千万量级数据中查询 10W 量级的数据 - 图11
对上述几种翻页方案,查询不同数目的数据,耗时数据如下表:
千万量级数据中查询 10W 量级的数据 - 图12

| 耗时数据

此处,分别使用 Elasticsearch 的 scroll scan 翻页方案、初版中的 CK 翻页方案进行数据查询,对比其耗时数据。
千万量级数据中查询 10W 量级的数据 - 图13
千万量级数据中查询 10W 量级的数据 - 图14
如上测试数据,可以发现,以十万,百万,千万量级的底池为例:

  • 底池量级越大,查询相同的数据量,耗时越大
  • 查询结果 3W 以下时,ES 性能优;查询结果 5W 以上时,CK 多线程性能优



    **

    千万量级数据中查询 10W 量级的数据 - 图15
    ES+Hbase 组合查询方案
    千万量级数据中查询 10W 量级的数据 - 图16

在「使用 ES Scroll Scan 优化深翻页」中,使用 Elasticsearch 的 scroll scan 翻页方案对深翻页问题进行了优化,但在实现时为单线程调用,所以最终测试耗时数据并不是特别理想,和 CK 翻页方案性能差不多。

在调研阶段发现,从底池中取出 10W 的目标数据时,一个商品包含多个字段的信息(CK 表中一行记录有 150 个字段信息),如价格、会员价、学生价、库存、好评率等。

对于一行记录,当减少获取字段的个数时,查询耗时会有明显下降。如对 sku1的商品,从之前获取价格、会员价、学生价、亲友价、库存等 100 个字段信息,缩减到只获取价格、库存这两个字段信息。

如下图所示,使用 ES 查询方案,对查询同样条数的场景(从千万级底池中筛选出 7W+ 条数据),获取的每条记录的字段个数从 32 缩减到 17,再缩减到 1个(其实是两个字段,一个是商品唯一标识 sku_id,另一个是 ES 对每条文档记录的 doc_id)时,查询的耗时会从 9.3s 下降到 4.2s,再下降到 2.4s。
千万量级数据中查询 10W 量级的数据 - 图17
从中可以得出如下结论:

  • 一次 ES 查询中,若查询字段和信息较多,fetch 阶段的耗时,远大于 query 阶段的耗时。
  • 一次 ES 查询中,若查询字段和信息较多,通过减少不必要的查询字段,可以显著缩短查询耗时。

下面对结论中涉及的 query 和 fetch 查询阶段进行补充说明。

| ES 查询的两个阶段

在 ES 中,搜索一般包括两个阶段:

  • query 阶段:根据查询条件,确定要取哪些文档(doc),筛选出文档 ID(doc_id)
  • fetch 阶段:根据 query 阶段返回的文档 ID(doc_id),取出具体的文档(doc)



    | 组合使用 Hbase

    《ES 亿级数据检索优化,三秒返回突破性能瓶颈一文调研的基础上,发现「减少不必要的查询展示字段」可以明显缩短查询耗时。

沿着这个优化思路,设计了一种新的查询方案:

  • ES 仅用于条件筛选,ES 的查询结果仅包含记录的唯一标识 sku_id(其实还包含 ES 为每条文档记录的 doc_id)
  • Hbase 是列存储数据库,每列数据有一个 rowKey。利用 rowKey 筛选一条记录时,复杂度为 O(1)。(类似于从 HashMap 中根据 key 取 value)
  • 根据 ES 查询返回的唯一标识 sku_id,作为 Hbase 查询中的 rowKey,在 O(1) 复杂度下获取其他信息字段,如价格,库存等

千万量级数据中查询 10W 量级的数据 - 图18
使用 ES + Hbase 组合查询方案,在线上进行了小规模的灰度测试。在 1000W 量级的底池数据中筛选 10W 的数据,对比 CK 翻页方案,最坏耗时从 10~18s 优化到了 3~6s 左右。

也应该看到,使用 ES + Hbase 组合查询方案,会增加系统复杂度,同时数据也需要同时存储到 ES 和 Hbase。

**

千万量级数据中查询 10W 量级的数据 - 图19
RediSearch+RedisJSON 优化方案
千万量级数据中查询 10W 量级的数据 - 图20

RediSearch 是基于 Redis 构建的分布式全文搜索和聚合引擎,能以极快的速度在 Redis 数据集上执行复杂的搜索查询。

RedisJSON 是一个 Redis 模块,在 Redis 中提供 JSON 支持。RedisJSON 可以和 RediSearch 无缝配合,实现索引和查询 JSON 文档。

根据一些参考资料,RediSearch + RedisJSON 可以实现极高的性能,可谓碾压其他 NoSQL 方案。在后续版本迭代中,可考虑使用该方案来进一步优化。

下面给出 RediSearch + RedisJSON 的部分性能数据。

| RediSearch 性能数据

在同等服务器配置下索引了 560 万个文档 (5.3GB),RediSearch 构建索引的时间为 221 秒,而 Elasticsearch 为 349 秒。RediSearch 比 ES 快了 58%。
千万量级数据中查询 10W 量级的数据 - 图21
数据建立索引后,使用 32 个客户端对两个单词进行检索,RediSearch 的吞吐量达到 12.5K ops/sec,ES 的吞吐量为 3.1K ops/sec,RediSearch 比 ES 要快 4 倍。

同时,RediSearch 的延迟为 8ms,而 ES 为 10ms,RediSearch 延迟稍微低些。

| RedisJSON 性能数据

根据官网的性能测试报告,RedisJson + RedisSearch 可谓碾压其他 NoSQL:

  • 对于隔离写入(isolated writes),RedisJSON 比 MongoDB 快 5.4 倍,比 ES 快 200 倍以上
  • 对于隔离读取(isolated reads),RedisJSON 比 MongoDB 快 12.7 倍,比 ES 快 500 倍以上

在混合工作负载场景中,实时更新不会影响 RedisJSON 的搜索和读取性能,而 ES 会受到影响:

  • RedisJSON 支持的操作数/秒比 MongoDB 高约 50 倍,比 ES 高 7 倍/秒
  • RedisJSON 的延迟比 MongoDB 低约 90 倍,比 ES 低 23.7 倍

此外,RedisJSON 的读取、写入和负载搜索延迟,在更高的百分位数中远比 ES 和 MongoDB 稳定。

当增加写入比率时,RedisJSON 还能处理越来越高的整体吞吐量。而当写入比率增加时,ES 会降低它可以处理的整体吞吐量。
**

千万量级数据中查询 10W 量级的数据 - 图22
总结
千万量级数据中查询 10W 量级的数据 - 图23

本文从一个业务诉求触发,对“千万量级数据中查询 10W 量级的数据”介绍了不同的设计方案。

对于在 1000W 量级的底池数据中筛选 10W 的数据的场景,不同方案的耗时如下:

  • 多线程+CK 翻页方案,最坏耗时为 10s~18s
  • 单线程+ES scroll scan 深翻页方案,相比 CK 方案,并未见到明显优化
  • ES+Hbase 组合方案,最坏耗时优化到了 3s~6s
  • RediSearch+RedisJSON 组合方案,后续会实测该方案的耗时