Single Shot Multibox Detection
:label:sec_ssd
In :numref:sec_bbox—:numref:sec_object-detection-dataset,
we introduced bounding boxes, anchor boxes,
multiscale object detection, and the dataset for object detection.
Now we are ready to use such background
knowledge to design an object detection model:
single shot multibox detection
(SSD) :cite:Liu.Anguelov.Erhan.ea.2016.
This model is simple, fast, and widely used.
Although this is just one of vast amounts of
object detection models,
some of the design principles
and implementation details in this section
are also applicable to other models.
Model
:numref:fig_ssd provides an overview of
the design of single-shot multibox detection.
This model mainly consists of
a base network
followed by
several multiscale feature map blocks.
The base network
is for extracting features from the input image,
so it can use a deep CNN.
For example,
the original single-shot multibox detection paper
adopts a VGG network truncated before the
classification layer :cite:Liu.Anguelov.Erhan.ea.2016,
while ResNet has also been commonly used.
Through our design
we can make the base network output
larger feature maps
so as to generate more anchor boxes
for detecting smaller objects.
Subsequently,
each multiscale feature map block
reduces (e.g., by half)
the height and width of the feature maps
from the previous block,
and enables each unit
of the feature maps
to increase its receptive field on the input image.
Recall the design
of multiscale object detection
through layerwise representations of images by
deep neural networks
in :numref:sec_multiscale-object-detection.
Since
multiscale feature maps closer to the top of :numref:fig_ssd
are smaller but have larger receptive fields,
they are suitable for detecting
fewer but larger objects.
In a nutshell, via its base network and several multiscale feature map blocks, single-shot multibox detection generates a varying number of anchor boxes with different sizes, and detects varying-size objects by predicting classes and offsets of these anchor boxes (thus the bounding boxes); thus, this is a multiscale object detection model.
:label:
fig_ssd
In the following,
we will describe the implementation details
of different blocks in :numref:fig_ssd. To begin with, we discuss how to implement
the class and bounding box prediction.
Class Prediction Layer
Let the number of object classes be $q$.
Then anchor boxes have $q+1$ classes,
where class 0 is background.
At some scale,
suppose that the height and width of feature maps
are $h$ and $w$, respectively.
When $a$ anchor boxes
are generated with
each spatial position of these feature maps as their center,
a total of $hwa$ anchor boxes need to be classified.
This often makes classification with fully-connected layers infeasible due to likely
heavy parameterization costs.
Recall how we used channels of
convolutional layers
to predict classes in :numref:sec_nin.
Single-shot multibox detection uses the
same technique to reduce model complexity.
Specifically, the class prediction layer uses a convolutional layer without altering width or height of feature maps. In this way, there can be a one-to-one correspondence between outputs and inputs at the same spatial dimensions (width and height) of feature maps. More concretely, channels of the output feature maps at any spatial position ($x$, $y$) represent class predictions for all the anchor boxes centered on ($x$, $y$) of the input feature maps. To produce valid predictions, there must be $a(q+1)$ output channels, where for the same spatial position the output channel with index $i(q+1) + j$ represents the prediction of the class $j$ ($0 \leq j \leq q$) for the anchor box $i$ ($0 \leq i < a$).
Below we define such a class prediction layer,
specifying $a$ and $q$ via arguments num_anchors and num_classes, respectively.
This layer uses a $3\times3$ convolutional layer with a
padding of 1.
The width and height of the input and output of this
convolutional layer remain unchanged.
```{.python .input} %matplotlib inline from d2l import mxnet as d2l from mxnet import autograd, gluon, image, init, np, npx from mxnet.gluon import nn
npx.set_np()
def cls_predictor(num_anchors, num_classes): return nn.Conv2D(num_anchors * (num_classes + 1), kernel_size=3, padding=1)
```{.python .input}#@tab pytorch%matplotlib inlinefrom d2l import torch as d2limport torchimport torchvisionfrom torch import nnfrom torch.nn import functional as Fdef cls_predictor(num_inputs, num_anchors, num_classes):return nn.Conv2d(num_inputs, num_anchors * (num_classes + 1),kernel_size=3, padding=1)
Bounding Box Prediction Layer
The design of the bounding box prediction layer is similar to that of the class prediction layer. The only difference lies in the number of outputs for each anchor box: here we need to predict four offsets rather than $q+1$ classes.
```{.python .input} def bbox_predictor(num_anchors): return nn.Conv2D(num_anchors * 4, kernel_size=3, padding=1)
```{.python .input}#@tab pytorchdef bbox_predictor(num_inputs, num_anchors):return nn.Conv2d(num_inputs, num_anchors * 4, kernel_size=3, padding=1)
Concatenating Predictions for Multiple Scales
As we mentioned, single-shot multibox detection uses multiscale feature maps to generate anchor boxes and predict their classes and offsets. At different scales, the shapes of feature maps or the numbers of anchor boxes centered on the same unit may vary. Therefore, shapes of the prediction outputs at different scales may vary.
In the following example,
we construct feature maps at two different scales,
Y1 and Y2,
for the same minibatch,
where the height and width of Y2
are half of those of Y1.
Let us take class prediction as an example.
Suppose that
5 and 3 anchor boxes
are generated for every unit in Y1 and Y2, respectively.
Suppose further that
the number of object classes is 10.
For feature maps Y1 and Y2
the numbers of channels in the class prediction outputs
are $5\times(10+1)=55$ and $3\times(10+1)=33$, respectively,
where either output shape is
(batch size, number of channels, height, width).
```{.python .input} def forward(x, block): block.initialize() return block(x)
Y1 = forward(np.zeros((2, 8, 20, 20)), cls_predictor(5, 10)) Y2 = forward(np.zeros((2, 16, 10, 10)), cls_predictor(3, 10)) Y1.shape, Y2.shape
```{.python .input}#@tab pytorchdef forward(x, block):return block(x)Y1 = forward(torch.zeros((2, 8, 20, 20)), cls_predictor(8, 5, 10))Y2 = forward(torch.zeros((2, 16, 10, 10)), cls_predictor(16, 3, 10))Y1.shape, Y2.shape
As we can see, except for the batch size dimension, the other three dimensions all have different sizes. To concatenate these two prediction outputs for more efficient computation, we will transform these tensors into a more consistent format.
Note that the channel dimension holds the predictions for anchor boxes with the same center. We first move this dimension to the innermost. Since the batch size remains the same for different scales, we can transform the prediction output into a two-dimensional tensor with shape (batch size, height $\times$ width $\times$ number of channels). Then we can concatenate such outputs at different scales along dimension 1.
```{.python .input} def flatten_pred(pred): return npx.batch_flatten(pred.transpose(0, 2, 3, 1))
def concat_preds(preds): return np.concatenate([flatten_pred(p) for p in preds], axis=1)
```{.python .input}#@tab pytorchdef flatten_pred(pred):return torch.flatten(pred.permute(0, 2, 3, 1), start_dim=1)def concat_preds(preds):return torch.cat([flatten_pred(p) for p in preds], dim=1)
In this way,
even though Y1 and Y2 have different sizes
in channels, heights, and widths,
we can still concatenate these two prediction outputs at two different scales for the same minibatch.
```{.python .input}
@tab all
concat_preds([Y1, Y2]).shape
### Downsampling BlockIn order to detect objects at multiple scales,we define the following downsampling block `down_sample_blk` thathalves the height and width of input feature maps.In fact,this block applies the design of VGG blocksin :numref:`subsec_vgg-blocks`.More concretely,each downsampling block consists oftwo $3\times3$ convolutional layers with padding of 1followed by a $2\times2$ maximum pooling layer with stride of 2.As we know, $3\times3$ convolutional layers with padding of 1 do not change the shape of feature maps.However, the subsequent $2\times2$ maximum pooling reduces the height and width of input feature maps by half.For both input and output feature maps of this downsampling block,because $1\times 2+(3-1)+(3-1)=6$,each unit in the outputhas a $6\times6$ receptive field on the input.Therefore, the downsampling block enlarges the receptive field of each unit in its output feature maps.```{.python .input}def down_sample_blk(num_channels):blk = nn.Sequential()for _ in range(2):blk.add(nn.Conv2D(num_channels, kernel_size=3, padding=1),nn.BatchNorm(in_channels=num_channels),nn.Activation('relu'))blk.add(nn.MaxPool2D(2))return blk
```{.python .input}
@tab pytorch
def downsample_blk(in_channels, out_channels): blk = [] for in range(2): blk.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)) blk.append(nn.BatchNorm2d(out_channels)) blk.append(nn.ReLU()) in_channels = out_channels blk.append(nn.MaxPool2d(2)) return nn.Sequential(*blk)
In the following example, our constructed downsampling block changes the number of input channels and halves the height and width of the input feature maps.```{.python .input}forward(np.zeros((2, 3, 20, 20)), down_sample_blk(10)).shape
```{.python .input}
@tab pytorch
forward(torch.zeros((2, 3, 20, 20)), down_sample_blk(3, 10)).shape
### Base Network BlockThe base network block is used to extract features from input images.For simplicity,we construct a small base networkconsisting of three downsampling blocksthat double the number of channels at each block.Given a $256\times256$ input image,this base network block outputs $32 \times 32$ feature maps ($256/2^3=32$).```{.python .input}def base_net():blk = nn.Sequential()for num_filters in [16, 32, 64]:blk.add(down_sample_blk(num_filters))return blkforward(np.zeros((2, 3, 256, 256)), base_net()).shape
```{.python .input}
@tab pytorch
def base_net(): blk = [] num_filters = [3, 16, 32, 64] for i in range(len(num_filters) - 1): blk.append(down_sample_blk(num_filters[i], num_filters[i+1])) return nn.Sequential(*blk)
forward(torch.zeros((2, 3, 256, 256)), base_net()).shape
### The Complete ModelThe completesingle shot multibox detection modelconsists of five blocks.The feature maps produced by each blockare used for both(i) generating anchor boxesand (ii) predicting classes and offsets of these anchor boxes.Among these five blocks,the first oneis the base network block,the second to the fourth aredownsampling blocks,and the last blockuses global maximum poolingto reduce both the height and width to 1.Technically,the second to the fifth blocksare allthosemultiscale feature map blocksin :numref:`fig_ssd`.```{.python .input}def get_blk(i):if i == 0:blk = base_net()elif i == 4:blk = nn.GlobalMaxPool2D()else:blk = down_sample_blk(128)return blk
```{.python .input}
@tab pytorch
def get_blk(i): if i == 0: blk = base_net() elif i == 1: blk = down_sample_blk(64, 128) elif i == 4: blk = nn.AdaptiveMaxPool2d((1,1)) else: blk = down_sample_blk(128, 128) return blk
Now we define the forward propagationfor each block.Different fromin image classification tasks,outputs here include(i) CNN feature maps `Y`,(ii) anchor boxes generated using `Y` at the current scale,and (iii) classes and offsets predicted (based on `Y`)for these anchor boxes.```{.python .input}def blk_forward(X, blk, size, ratio, cls_predictor, bbox_predictor):Y = blk(X)anchors = d2l.multibox_prior(Y, sizes=size, ratios=ratio)cls_preds = cls_predictor(Y)bbox_preds = bbox_predictor(Y)return (Y, anchors, cls_preds, bbox_preds)
```{.python .input}
@tab pytorch
def blk_forward(X, blk, size, ratio, cls_predictor, bbox_predictor): Y = blk(X) anchors = d2l.multibox_prior(Y, sizes=size, ratios=ratio) cls_preds = cls_predictor(Y) bbox_preds = bbox_predictor(Y) return (Y, anchors, cls_preds, bbox_preds)
Recall thatin :numref:`fig_ssd`a multiscale feature map blockthat is closer to the topis for detecting larger objects;thus, it needs to generate larger anchor boxes.In the above forward propagation,at each multiscale feature map blockwe pass in a list of two scale valuesvia the `sizes` argumentof the invoked `multibox_prior` function (described in :numref:`sec_anchor`).In the following,the interval between 0.2 and 1.05is split evenlyinto five sections to determine thesmaller scale values at the five blocks: 0.2, 0.37, 0.54, 0.71, and 0.88.Then their larger scale valuesare given by$\sqrt{0.2 \times 0.37} = 0.272$, $\sqrt{0.37 \times 0.54} = 0.447$, and so on.```{.python .input}#@tab allsizes = [[0.2, 0.272], [0.37, 0.447], [0.54, 0.619], [0.71, 0.79],[0.88, 0.961]]ratios = [[1, 2, 0.5]] * 5num_anchors = len(sizes[0]) + len(ratios[0]) - 1
Now we can define the complete model TinySSD as follows.
```{.python .input} class TinySSD(nn.Block): def init(self, numclasses, **kwargs): super(TinySSD, self)._init(**kwargs) self.num_classes = num_classes for i in range(5):
# Equivalent to the assignment statement `self.blk_i = get_blk(i)`setattr(self, f'blk_{i}', get_blk(i))setattr(self, f'cls_{i}', cls_predictor(num_anchors, num_classes))setattr(self, f'bbox_{i}', bbox_predictor(num_anchors))def forward(self, X):anchors, cls_preds, bbox_preds = [None] * 5, [None] * 5, [None] * 5for i in range(5):# Here `getattr(self, 'blk_%d' % i)` accesses `self.blk_i`X, anchors[i], cls_preds[i], bbox_preds[i] = blk_forward(X, getattr(self, f'blk_{i}'), sizes[i], ratios[i],getattr(self, f'cls_{i}'), getattr(self, f'bbox_{i}'))anchors = np.concatenate(anchors, axis=1)cls_preds = concat_preds(cls_preds)cls_preds = cls_preds.reshape(cls_preds.shape[0], -1, self.num_classes + 1)bbox_preds = concat_preds(bbox_preds)return anchors, cls_preds, bbox_preds
```{.python .input}#@tab pytorchclass TinySSD(nn.Module):def __init__(self, num_classes, **kwargs):super(TinySSD, self).__init__(**kwargs)self.num_classes = num_classesidx_to_in_channels = [64, 128, 128, 128, 128]for i in range(5):# Equivalent to the assignment statement `self.blk_i = get_blk(i)`setattr(self, f'blk_{i}', get_blk(i))setattr(self, f'cls_{i}', cls_predictor(idx_to_in_channels[i],num_anchors, num_classes))setattr(self, f'bbox_{i}', bbox_predictor(idx_to_in_channels[i],num_anchors))def forward(self, X):anchors, cls_preds, bbox_preds = [None] * 5, [None] * 5, [None] * 5for i in range(5):# Here `getattr(self, 'blk_%d' % i)` accesses `self.blk_i`X, anchors[i], cls_preds[i], bbox_preds[i] = blk_forward(X, getattr(self, f'blk_{i}'), sizes[i], ratios[i],getattr(self, f'cls_{i}'), getattr(self, f'bbox_{i}'))anchors = torch.cat(anchors, dim=1)cls_preds = concat_preds(cls_preds)cls_preds = cls_preds.reshape(cls_preds.shape[0], -1, self.num_classes + 1)bbox_preds = concat_preds(bbox_preds)return anchors, cls_preds, bbox_preds
We create a model instance
and use it to perform forward propagation
on a minibatch of $256 \times 256$ images X.
As shown earlier in this section, the first block outputs $32 \times 32$ feature maps. Recall that the second to fourth downsampling blocks halve the height and width and the fifth block uses global pooling. Since 4 anchor boxes are generated for each unit along spatial dimensions of feature maps, at all the five scales a total of $(32^2 + 16^2 + 8^2 + 4^2 + 1)\times 4 = 5444$ anchor boxes are generated for each image.
```{.python .input} net = TinySSD(num_classes=1) net.initialize() X = np.zeros((32, 3, 256, 256)) anchors, cls_preds, bbox_preds = net(X)
print(‘output anchors:’, anchors.shape) print(‘output class preds:’, cls_preds.shape) print(‘output bbox preds:’, bbox_preds.shape)
```{.python .input}#@tab pytorchnet = TinySSD(num_classes=1)X = torch.zeros((32, 3, 256, 256))anchors, cls_preds, bbox_preds = net(X)print('output anchors:', anchors.shape)print('output class preds:', cls_preds.shape)print('output bbox preds:', bbox_preds.shape)
Training
Now we will explain how to train the single shot multibox detection model for object detection.
Reading the Dataset and Initializing the Model
To begin with,
let us read
the banana detection dataset
described in :numref:sec_object-detection-dataset.
```{.python .input}
@tab all
batchsize = 32 train_iter, = d2l.load_data_bananas(batch_size)
There is only one class in the banana detection dataset. After defining the model,we need to initialize its parameters and definethe optimization algorithm.```{.python .input}device, net = d2l.try_gpu(), TinySSD(num_classes=1)net.initialize(init=init.Xavier(), ctx=device)trainer = gluon.Trainer(net.collect_params(), 'sgd',{'learning_rate': 0.2, 'wd': 5e-4})
```{.python .input}
@tab pytorch
device, net = d2l.try_gpu(), TinySSD(num_classes=1) trainer = torch.optim.SGD(net.parameters(), lr=0.2, weight_decay=5e-4)
### Defining Loss and Evaluation FunctionsObject detection has two types of losses.The first loss concerns classes of anchor boxes:its computationcan simply reusethe cross-entropy loss functionthat we used for image classification.The second lossconcerns offsets of positive (non-background) anchor boxes:this is a regression problem.For this regression problem,however,here we do not use the squared lossdescribed in :numref:`subsec_normal_distribution_and_squared_loss`.Instead,we use the $L_1$ norm loss,the absolute value of the difference betweenthe prediction and the ground-truth.The mask variable `bbox_masks` filters outnegative anchor boxes and illegal (padded)anchor boxes in the loss calculation.In the end, we sum upthe anchor box class lossand the anchor box offset lossto obtain the loss function for the model.```{.python .input}cls_loss = gluon.loss.SoftmaxCrossEntropyLoss()bbox_loss = gluon.loss.L1Loss()def calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels, bbox_masks):cls = cls_loss(cls_preds, cls_labels)bbox = bbox_loss(bbox_preds * bbox_masks, bbox_labels * bbox_masks)return cls + bbox
```{.python .input}
@tab pytorch
cls_loss = nn.CrossEntropyLoss(reduction=’none’) bbox_loss = nn.L1Loss(reduction=’none’)
def calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels, bbox_masks): batch_size, num_classes = cls_preds.shape[0], cls_preds.shape[2] cls = cls_loss(cls_preds.reshape(-1, num_classes), cls_labels.reshape(-1)).reshape(batch_size, -1).mean(dim=1) bbox = bbox_loss(bbox_preds bbox_masks, bbox_labels bbox_masks).mean(dim=1) return cls + bbox
We can use accuracy to evaluate the classification results.Due to the used $L_1$ norm loss for the offsets,we use the *mean absolute error* to evaluate thepredicted bounding boxes.These prediction results are obtainedfrom the generated anchor boxes and thepredicted offsets for them.```{.python .input}def cls_eval(cls_preds, cls_labels):# Because the class prediction results are on the final dimension,# `argmax` needs to specify this dimensionreturn float((cls_preds.argmax(axis=-1).astype(cls_labels.dtype) == cls_labels).sum())def bbox_eval(bbox_preds, bbox_labels, bbox_masks):return float((np.abs((bbox_labels - bbox_preds) * bbox_masks)).sum())
```{.python .input}
@tab pytorch
def cls_eval(cls_preds, cls_labels):
# Because the class prediction results are on the final dimension,# `argmax` needs to specify this dimensionreturn float((cls_preds.argmax(dim=-1).type(cls_labels.dtype) == cls_labels).sum())
def bbox_eval(bbox_preds, bbox_labels, bbox_masks): return float((torch.abs((bbox_labels - bbox_preds) * bbox_masks)).sum())
### Training the ModelWhen training the model,we need to generate multiscale anchor boxes (`anchors`)and predict their classes (`cls_preds`) and offsets (`bbox_preds`) in the forward propagation.Then we label the classes (`cls_labels`) and offsets (`bbox_labels`) of such generated anchor boxesbased on the label information `Y`.Finally, we calculate the loss functionusing the predicted and labeled valuesof the classes and offsets.For concise implementations,evaluation of the test dataset is omitted here.```{.python .input}num_epochs, timer = 20, d2l.Timer()animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['class error', 'bbox mae'])for epoch in range(num_epochs):# Sum of training accuracy, no. of examples in sum of training accuracy,# Sum of absolute error, no. of examples in sum of absolute errormetric = d2l.Accumulator(4)for features, target in train_iter:timer.start()X = features.as_in_ctx(device)Y = target.as_in_ctx(device)with autograd.record():# Generate multiscale anchor boxes and predict their classes and# offsetsanchors, cls_preds, bbox_preds = net(X)# Label the classes and offsets of these anchor boxesbbox_labels, bbox_masks, cls_labels = d2l.multibox_target(anchors,Y)# Calculate the loss function using the predicted and labeled# values of the classes and offsetsl = calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels,bbox_masks)l.backward()trainer.step(batch_size)metric.add(cls_eval(cls_preds, cls_labels), cls_labels.size,bbox_eval(bbox_preds, bbox_labels, bbox_masks),bbox_labels.size)cls_err, bbox_mae = 1 - metric[0] / metric[1], metric[2] / metric[3]animator.add(epoch + 1, (cls_err, bbox_mae))print(f'class err {cls_err:.2e}, bbox mae {bbox_mae:.2e}')print(f'{len(train_iter._dataset) / timer.stop():.1f} examples/sec on 'f'{str(device)}')
```{.python .input}
@tab pytorch
num_epochs, timer = 20, d2l.Timer() animator = d2l.Animator(xlabel=’epoch’, xlim=[1, num_epochs], legend=[‘class error’, ‘bbox mae’]) net = net.to(device) for epoch in range(num_epochs):
# Sum of training accuracy, no. of examples in sum of training accuracy,# Sum of absolute error, no. of examples in sum of absolute errormetric = d2l.Accumulator(4)net.train()for features, target in train_iter:timer.start()trainer.zero_grad()X, Y = features.to(device), target.to(device)# Generate multiscale anchor boxes and predict their classes and# offsetsanchors, cls_preds, bbox_preds = net(X)# Label the classes and offsets of these anchor boxesbbox_labels, bbox_masks, cls_labels = d2l.multibox_target(anchors, Y)# Calculate the loss function using the predicted and labeled values# of the classes and offsetsl = calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels,bbox_masks)l.mean().backward()trainer.step()metric.add(cls_eval(cls_preds, cls_labels), cls_labels.numel(),bbox_eval(bbox_preds, bbox_labels, bbox_masks),bbox_labels.numel())cls_err, bbox_mae = 1 - metric[0] / metric[1], metric[2] / metric[3]animator.add(epoch + 1, (cls_err, bbox_mae))
print(f’class err {cls_err:.2e}, bbox mae {bbox_mae:.2e}’) print(f’{len(train_iter.dataset) / timer.stop():.1f} examples/sec on ‘ f’{str(device)}’)
## PredictionDuring prediction,the goal is to detect all the objects of intereston the image.Belowwe read and resize a test image,converting it toa four-dimensional tensor that isrequired by convolutional layers.```{.python .input}img = image.imread('../img/banana.jpg')feature = image.imresize(img, 256, 256).astype('float32')X = np.expand_dims(feature.transpose(2, 0, 1), axis=0)
```{.python .input}
@tab pytorch
X = torchvision.io.read_image(‘../img/banana.jpg’).unsqueeze(0).float() img = X.squeeze(0).permute(1, 2, 0).long()
Using the `multibox_detection` function below,the predicted bounding boxesare obtainedfrom the anchor boxes and their predicted offsets.Then non-maximum suppression is usedto remove similar predicted bounding boxes.```{.python .input}def predict(X):anchors, cls_preds, bbox_preds = net(X.as_in_ctx(device))cls_probs = npx.softmax(cls_preds).transpose(0, 2, 1)output = d2l.multibox_detection(cls_probs, bbox_preds, anchors)idx = [i for i, row in enumerate(output[0]) if row[0] != -1]return output[0, idx]output = predict(X)
```{.python .input}
@tab pytorch
def predict(X): net.eval() anchors, cls_preds, bbox_preds = net(X.to(device)) cls_probs = F.softmax(cls_preds, dim=2).permute(0, 2, 1) output = d2l.multibox_detection(cls_probs, bbox_preds, anchors) idx = [i for i, row in enumerate(output[0]) if row[0] != -1] return output[0, idx]
output = predict(X)
Finally, we displayall the predicted bounding boxes withconfidence 0.9 or aboveas the output.```{.python .input}def display(img, output, threshold):d2l.set_figsize((5, 5))fig = d2l.plt.imshow(img.asnumpy())for row in output:score = float(row[1])if score < threshold:continueh, w = img.shape[0:2]bbox = [row[2:6] * np.array((w, h, w, h), ctx=row.ctx)]d2l.show_bboxes(fig.axes, bbox, '%.2f' % score, 'w')display(img, output, threshold=0.9)
```{.python .input}
@tab pytorch
def display(img, output, threshold): d2l.set_figsize((5, 5)) fig = d2l.plt.imshow(img) for row in output: score = float(row[1]) if score < threshold: continue h, w = img.shape[0:2] bbox = [row[2:6] * torch.tensor((w, h, w, h), device=row.device)] d2l.show_bboxes(fig.axes, bbox, ‘%.2f’ % score, ‘w’)
display(img, output.cpu(), threshold=0.9)
## Summary* Single shot multibox detection is a multiscale object detection model. Via its base network and several multiscale feature map blocks, single-shot multibox detection generates a varying number of anchor boxes with different sizes, and detects varying-size objects by predicting classes and offsets of these anchor boxes (thus the bounding boxes).* When training the single-shot multibox detection model, the loss function is calculated based on the predicted and labeled values of the anchor box classes and offsets.## Exercises1. Can you improve the single-shot multibox detection by improving the loss function? For example, replace $L_1$ norm loss with smooth $L_1$ norm loss for the predicted offsets. This loss function uses a square function around zero for smoothness, which is controlled by the hyperparameter $\sigma$:$$f(x) =\begin{cases}(\sigma x)^2/2,& \text{if }|x| < 1/\sigma^2\\|x|-0.5/\sigma^2,& \text{otherwise}\end{cases}$$When $\sigma$ is very large, this loss is similar to the $L_1$ norm loss. When its value is smaller, the loss function is smoother.```{.python .input}sigmas = [10, 1, 0.5]lines = ['-', '--', '-.']x = np.arange(-2, 2, 0.1)d2l.set_figsize()for l, s in zip(lines, sigmas):y = npx.smooth_l1(x, scalar=s)d2l.plt.plot(x.asnumpy(), y.asnumpy(), l, label='sigma=%.1f' % s)d2l.plt.legend();
```{.python .input}
@tab pytorch
def smooth_l1(data, scalar): out = [] for i in data: if abs(i) < 1 / (scalar 2): out.append(((scalar * i) 2) / 2) else: out.append(abs(i) - 0.5 / (scalar ** 2)) return torch.tensor(out)
sigmas = [10, 1, 0.5] lines = [‘-‘, ‘—‘, ‘-.’] x = torch.arange(-2, 2, 0.1) d2l.set_figsize()
for l, s in zip(lines, sigmas): y = smooth_l1(x, scalar=s) d2l.plt.plot(x, y, l, label=’sigma=%.1f’ % s) d2l.plt.legend();
Besides, in the experiment we used cross-entropy loss for class prediction:denoting by $p_j$ the predicted probability for the ground-truth class $j$, the cross-entropy loss is $-\log p_j$. We can also use the focal loss:cite:`Lin.Goyal.Girshick.ea.2017`: given hyperparameters $\gamma > 0$and $\alpha > 0$, this loss is defined as:$$ - \alpha (1-p_j)^{\gamma} \log p_j.$$As we can see, increasing $\gamma$can effectively reduce the relative lossfor well-classified examples (e.g., $p_j > 0.5$)so the trainingcan focus more on those difficult examples that are misclassified.```{.python .input}def focal_loss(gamma, x):return -(1 - x) ** gamma * np.log(x)x = np.arange(0.01, 1, 0.01)for l, gamma in zip(lines, [0, 1, 5]):y = d2l.plt.plot(x.asnumpy(), focal_loss(gamma, x).asnumpy(), l,label='gamma=%.1f' % gamma)d2l.plt.legend();
```{.python .input}
@tab pytorch
def focal_loss(gamma, x): return -(1 - x) * gamma torch.log(x)
x = torch.arange(0.01, 1, 0.01) for l, gamma in zip(lines, [0, 1, 5]): y = d2l.plt.plot(x, focal_loss(gamma, x), l, label=’gamma=%.1f’ % gamma) d2l.plt.legend(); ```
- Due to space limitations, we have omitted some implementation details of the single shot multibox detection model in this section. Can you further improve the model in the following aspects:
- When an object is much smaller compared with the image, the model could resize the input image bigger.
- There are typically a vast number of negative anchor boxes. To make the class distribution more balanced, we could downsample negative anchor boxes.
- In the loss function, assign different weight hyperparameters to the class loss and the offset loss.
- Use other methods to evaluate the object detection model, such as those in the single shot multibox detection paper :cite:
Liu.Anguelov.Erhan.ea.2016.
:begin_tab:mxnet
Discussions
:end_tab:
:begin_tab:pytorch
Discussions
:end_tab:
