核心语句:
from datetime import datetimeprev_time = datetime.now()...cur_time = datetime.now()h, remainder = divmod((cur_time - prev_time).seconds, 3600) #divmod的返回值:商和余数m, s = divmod(remainder, 60)time_str = "Time %02d:%02d:%02d" % (h, m, s)
参考下面实例
def train(net, train_data, valid_data, num_epochs, optimizer, criterion):prev_time = datetime.now()for epoch in range(num_epochs):train_loss = 0train_acc = 0net = net.train()for im, label in train_data:im = im.to(device) # (bs, 3, h, w)label = label.to(device) # (bs, h, w)# forwardoutput = net(im)loss = criterion(output, label)# backwardoptimizer.zero_grad()loss.backward()optimizer.step()train_loss += loss.item()train_acc += get_acc(output, label)writer.add_scalar('训练损失值', train_loss, epoch) #记录损失值准备可视化cur_time = datetime.now()h, remainder = divmod((cur_time - prev_time).seconds, 3600)m, s = divmod(remainder, 60)time_str = "Time %02d:%02d:%02d" % (h, m, s)if valid_data is not None:valid_loss = 0valid_acc = 0net = net.eval()for im, label in valid_data:im = im.to(device) # (bs, 3, h, w)label = label.to(device) # (bs, h, w)output = net(im)loss = criterion(output, label)valid_loss += loss.item()valid_acc += get_acc(output, label)epoch_str = ("Epoch %d. Train Loss: %f, Train Acc: %f, Valid Loss: %f, Valid Acc: %f, "% (epoch, train_loss / len(train_data),train_acc / len(train_data), valid_loss / len(valid_data),valid_acc / len(valid_data)))else:epoch_str = ("Epoch %d. Train Loss: %f, Train Acc: %f, " %(epoch, train_loss / len(train_data),train_acc / len(train_data)))prev_time = cur_timeprint(epoch_str + time_str)
