最简单朴素的CNN模型
import torch.nn as nnimport torch.nn.functional as Fdevice = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')class CNNNet(nn.Module): def __init__(self): super(CNNNet, self).__init__() self.conv1 = nn.Conv2d(in_channels=3,out_channels=16,kernel_size=5,stride=1) self.pool1 = nn.MaxPool2d(kernel_size=2,stride=2) self.conv2 = nn.Conv2d(in_channels=16,out_channels=36,kernel_size=3,stride=1) self.pool2 = nn.MaxPool2d(kernel_size=2,stride=2) #self.aap = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Linear(1296,128) self.fc2 = nn.Linear(128,10) #self.fc3 = nn.Linear(36,10) def forward(self,x): x = self.pool1(F.relu(self.conv1(x))) x = self.pool2(F.relu(self.conv2(x))) #x = self.aap(x) #x = x.view(x.shape[0],-1) #x = self.fc3(x) x = x.view(-1,36*6*6) #print("x.shape:{}".format(x.shape)) x = F.relu(self.fc2(F.relu(self.fc1(x)))) return xmodel = CNNNet()model = model.to(device)print('--------------查看网络结构-----------')print(model)