CountDownLatch
这个类使一个线程等待其他线程各自执行完毕后再执行。
是通过一个计数器来实现的,计数器的初始值是线程的数量。每当一个线程执行完毕后,计数器的值就-1,当计数器的值为0时,表示所有线程都执行完毕,然后在闭锁上等待的线程就可以恢复工作了。
API
//调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行
public void await() throws InterruptedException { };
//和await()类似,只不过等待一定的时间后count值还没变为0的话就会继续执行
public boolean await(long timeout, TimeUnit unit) throws InterruptedException { };
//将count值减1
public void countDown() { };
使用示例:
public class CountDownLatchTest {
public static void main(String[] args) {
final CountDownLatch latch = new CountDownLatch(2);
System.out.println("主线程开始执行…… ……");
//第一个子线程执行
ExecutorService es1 = Executors.newSingleThreadExecutor();
es1.execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(3000);
System.out.println("子线程:"+Thread.currentThread().getName()+"执行");
} catch (InterruptedException e) {
e.printStackTrace();
}
latch.countDown();
}
});
es1.shutdown();
//第二个子线程执行
ExecutorService es2 = Executors.newSingleThreadExecutor();
es2.execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("子线程:"+Thread.currentThread().getName()+"执行");
latch.countDown();
}
});
es2.shutdown();
System.out.println("等待两个线程执行完毕…… ……");
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("两个子线程都执行完毕,继续执行主线程");
}
}
主线程开始执行…… ……
等待两个线程执行完毕…… ……
子线程:pool-1-thread-1执行
子线程:pool-2-thread-1执行
两个子线程都执行完毕,继续执行主线程
public class Parallellimit {
public static void main(String[] args) {
ExecutorService pool = Executors.newCachedThreadPool();
CountDownLatch cdl = new CountDownLatch(100);
for (int i = 0; i < 100; i++) {
CountRunnable runnable = new CountRunnable(cdl);
pool.execute(runnable);
}
}
}
class CountRunnable implements Runnable {
private CountDownLatch countDownLatch;
public CountRunnable(CountDownLatch countDownLatch) {
this.countDownLatch = countDownLatch;
}
@Override
public void run() {
try {
synchronized (countDownLatch) {
/*** 每次减少一个容量*/
countDownLatch.countDown();
System.out.println("thread counts = " + (countDownLatch.getCount()));
}
countDownLatch.await();
System.out.println("concurrency counts = " + (100 - countDownLatch.getCount()));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
调用countDownLatch对象的await()方法后,当前线程会被阻塞,直到下面的情况之一发生时:
- 当所有线程都调用CountDownLatch对象的countDown()后,计数器为0时
- 其他线程调用了当前线程的interrupt()方法,中断当前线程,当前线程会抛出InterruptedException异常,然后返回
实现原理
先前介绍过如何基于AQS同步器实现一个自定义同步器,实际上CountdownLatch也是基于AQS来实现的,只要使用AQS的共享模式即可以轻松实现闭锁。
CountdownLatch类的构造函数需要传入一个整型参数,表示倒计数器的初始值,对应着AQS的state状态变量。按照官方推荐的自定义同步器的做法,将继承了AQS类的子类Sync作为CountdownLatch类的内部类,而CountdownLatch同步器中相关的操作只需代理成子类中对应的方法即可。比如await方法和countDown方法分别调用Sync子类的acquireSharedInterruptibly方法和releaseShared方法。
Sync子类中需要我们实现的两个方法是tryAcquireShared和tryReleaseShared,分别用于获取共享锁和释放共享锁。先看获取共享锁的逻辑,如果状态变量等于0则返回1,当倒计数器的值减少到0的时候全部线程都可以直接尝试得到共享锁,而当倒计数器的值为非0时使之返回-1交给AQS进行入队管理。然后看释放共享锁的逻辑,主要是通过自旋来进行减一操作,getState方法获取状态变量,将其值减一后使用compareAndSetState方法进行CAS修改状态值。
CountDownLatch和CyclicBarrier区别
1.countDownLatch是一个计数器,线程完成一个记录一个,计数器递减,只能只用一次
2.CyclicBarrier的计数器更像一个阀门,需要所有线程都到达,然后继续执行,计数器递增,提供reset功能,可以多次使用
参考文章:
作者:指尖架构141319 链接:https://www.jianshu.com/p/e233bb37d2e6
//调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行
public void await() throws InterruptedException { };
//和await()类似,只不过等待一定的时间后count值还没变为0的话就会继续执行
public boolean await(long timeout, TimeUnit unit) throws InterruptedException { };
//将count值减1
public void countDown() { };
public class CountDownLatchTest {
public static void main(String[] args) {
final CountDownLatch latch = new CountDownLatch(2);
System.out.println("主线程开始执行…… ……");
//第一个子线程执行
ExecutorService es1 = Executors.newSingleThreadExecutor();
es1.execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(3000);
System.out.println("子线程:"+Thread.currentThread().getName()+"执行");
} catch (InterruptedException e) {
e.printStackTrace();
}
latch.countDown();
}
});
es1.shutdown();
//第二个子线程执行
ExecutorService es2 = Executors.newSingleThreadExecutor();
es2.execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("子线程:"+Thread.currentThread().getName()+"执行");
latch.countDown();
}
});
es2.shutdown();
System.out.println("等待两个线程执行完毕…… ……");
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("两个子线程都执行完毕,继续执行主线程");
}
}
主线程开始执行…… ……
等待两个线程执行完毕…… ……
子线程:pool-1-thread-1执行
子线程:pool-2-thread-1执行
两个子线程都执行完毕,继续执行主线程
public class Parallellimit {
public static void main(String[] args) {
ExecutorService pool = Executors.newCachedThreadPool();
CountDownLatch cdl = new CountDownLatch(100);
for (int i = 0; i < 100; i++) {
CountRunnable runnable = new CountRunnable(cdl);
pool.execute(runnable);
}
}
}
class CountRunnable implements Runnable {
private CountDownLatch countDownLatch;
public CountRunnable(CountDownLatch countDownLatch) {
this.countDownLatch = countDownLatch;
}
@Override
public void run() {
try {
synchronized (countDownLatch) {
/*** 每次减少一个容量*/
countDownLatch.countDown();
System.out.println("thread counts = " + (countDownLatch.getCount()));
}
countDownLatch.await();
System.out.println("concurrency counts = " + (100 - countDownLatch.getCount()));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
//调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行
public void await() throws InterruptedException { };
//和await()类似,只不过等待一定的时间后count值还没变为0的话就会继续执行
public boolean await(long timeout, TimeUnit unit) throws InterruptedException { };
//将count值减1
public void countDown() { };
public class CountDownLatchTest {
public static void main(String[] args) {
final CountDownLatch latch = new CountDownLatch(2);
System.out.println("主线程开始执行…… ……");
//第一个子线程执行
ExecutorService es1 = Executors.newSingleThreadExecutor();
es1.execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(3000);
System.out.println("子线程:"+Thread.currentThread().getName()+"执行");
} catch (InterruptedException e) {
e.printStackTrace();
}
latch.countDown();
}
});
es1.shutdown();
//第二个子线程执行
ExecutorService es2 = Executors.newSingleThreadExecutor();
es2.execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("子线程:"+Thread.currentThread().getName()+"执行");
latch.countDown();
}
});
es2.shutdown();
System.out.println("等待两个线程执行完毕…… ……");
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("两个子线程都执行完毕,继续执行主线程");
}
}
主线程开始执行…… ……
等待两个线程执行完毕…… ……
子线程:pool-1-thread-1执行
子线程:pool-2-thread-1执行
两个子线程都执行完毕,继续执行主线程
public class Parallellimit {
public static void main(String[] args) {
ExecutorService pool = Executors.newCachedThreadPool();
CountDownLatch cdl = new CountDownLatch(100);
for (int i = 0; i < 100; i++) {
CountRunnable runnable = new CountRunnable(cdl);
pool.execute(runnable);
}
}
}
class CountRunnable implements Runnable {
private CountDownLatch countDownLatch;
public CountRunnable(CountDownLatch countDownLatch) {
this.countDownLatch = countDownLatch;
}
@Override
public void run() {
try {
synchronized (countDownLatch) {
/*** 每次减少一个容量*/
countDownLatch.countDown();
System.out.println("thread counts = " + (countDownLatch.getCount()));
}
countDownLatch.await();
System.out.println("concurrency counts = " + (100 - countDownLatch.getCount()));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}