在前面的一些章节中,我们介绍了诸多用于图像分类的模型。在图像分类任务里,我们假设图像里只有一个主体目标,并关注如何识别该目标的类别。然而,很多时候图像里有多个我们感兴趣的目标,我们不仅想知道它们的类别,还想得到它们在图像中的具体位置。在计算机视觉里,我们将这类任务称为目标检测(object detection)或物体检测。

目标检测在多个领域中被广泛使用。例如,在无人驾驶里,我们需要通过识别拍摄到的视频图像里的车辆、行人、道路和障碍的位置来规划行进线路。机器人也常通过该任务来检测感兴趣的目标。安防领域则需要检测异常目标,如歹徒或者炸弹。

在接下来的几节里,我们将介绍目标检测里的多个深度学习模型。在此之前,让我们来了解目标位置这个概念。先导入实验所需的包或模块。

  1. %matplotlib inline
  2. from PIL import Image
  3. import sys
  4. sys.path.append("..")
  5. import d2lzh_pytorch as d2l

下面加载本节将使用的示例图像。可以看到图像左边是一只狗,右边是一只猫。它们是这张图像里的两个主要目标。

  1. d2l.set_figsize()
  2. img = Image.open('../img/catdog.jpg')
  3. d2l.plt.imshow(img); # 加分号只显示图

9.3_output1.png

9.3.1 边界框

在目标检测里,我们通常使用边界框(bounding box)来描述目标位置。边界框是一个矩形框,可以由矩形左上角的9.3 目标检测和边界框 - 图29.3 目标检测和边界框 - 图3轴坐标与右下角的9.3 目标检测和边界框 - 图49.3 目标检测和边界框 - 图5轴坐标确定。我们根据上面的图的坐标信息来定义图中狗和猫的边界框。图中的坐标原点在图像的左上角,原点往右和往下分别为9.3 目标检测和边界框 - 图6轴和9.3 目标检测和边界框 - 图7轴的正方向。

  1. # bbox是bounding box的缩写
  2. dog_bbox, cat_bbox = [60, 45, 378, 516], [400, 112, 655, 493]

我们可以在图中将边界框画出来,以检查其是否准确。画之前,我们定义一个辅助函数bbox_to_rect。它将边界框表示成matplotlib的边界框格式。

  1. def bbox_to_rect(bbox, color): # 本函数已保存在d2lzh_pytorch中方便以后使用
  2. # 将边界框(左上x, 左上y, 右下x, 右下y)格式转换成matplotlib格式:
  3. # ((左上x, 左上y), 宽, 高)
  4. return d2l.plt.Rectangle(
  5. xy=(bbox[0], bbox[1]), width=bbox[2]-bbox[0], height=bbox[3]-bbox[1],
  6. fill=False, edgecolor=color, linewidth=2)

我们将边界框加载在图像上,可以看到目标的主要轮廓基本在框内。

  1. fig = d2l.plt.imshow(img)
  2. fig.axes.add_patch(bbox_to_rect(dog_bbox, 'blue'))
  3. fig.axes.add_patch(bbox_to_rect(cat_bbox, 'red'));

输出:

9.3_output2.png

小结

  • 在目标检测里不仅需要找出图像里面所有感兴趣的目标,而且要知道它们的位置。位置一般由矩形边界框来表示。

注:除代码外本节与原书基本相同,原书传送门