初见PyTorch.pdf
import torchfrom torch import autogradx = torch.tensor(1.)a = torch.tensor(1., requires_grad=True)b = torch.tensor(2., requires_grad=True)c = torch.tensor(3., requires_grad=True)y = a**2 * x + b * x + cprint('before:', a.grad, b.grad, c.grad)grads = autograd.grad(y, [a, b, c])print('after :', grads[0], grads[1], grads[2])
import torchimport timeprint(torch.__version__)print(torch.cuda.is_available())# print('hello, world.')a = torch.randn(10000, 1000)b = torch.randn(1000, 2000)t0 = time.time()c = torch.matmul(a, b)t1 = time.time()print(a.device, t1 - t0, c.norm(2))device = torch.device('cuda')a = a.to(device)b = b.to(device)t0 = time.time()c = torch.matmul(a, b)t2 = time.time()print(a.device, t2 - t0, c.norm(2))t0 = time.time()c = torch.matmul(a, b)t2 = time.time()print(a.device, t2 - t0, c.norm(2))