32.pdf
import torchimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optimfrom torchvision import datasets, transformsbatch_size=200learning_rate=0.01epochs=10train_db = datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]))train_loader = torch.utils.data.DataLoader( train_db, batch_size=batch_size, shuffle=True)test_db = datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]))test_loader = torch.utils.data.DataLoader(test_db, batch_size=batch_size, shuffle=True)print('train:', len(train_db), 'test:', len(test_db))train_db, val_db = torch.utils.data.random_split(train_db, [50000, 10000])print('db1:', len(train_db), 'db2:', len(val_db))train_loader = torch.utils.data.DataLoader( train_db, batch_size=batch_size, shuffle=True)val_loader = torch.utils.data.DataLoader( val_db, batch_size=batch_size, shuffle=True)class MLP(nn.Module): def __init__(self): super(MLP, self).__init__() self.model = nn.Sequential( nn.Linear(784, 200), nn.LeakyReLU(inplace=True), nn.Linear(200, 200), nn.LeakyReLU(inplace=True), nn.Linear(200, 10), nn.LeakyReLU(inplace=True), ) def forward(self, x): x = self.model(x) return xdevice = torch.device('cuda:0')net = MLP().to(device)optimizer = optim.SGD(net.parameters(), lr=learning_rate)criteon = nn.CrossEntropyLoss().to(device)for epoch in range(epochs): for batch_idx, (data, target) in enumerate(train_loader): data = data.view(-1, 28*28) data, target = data.to(device), target.cuda() logits = net(data) loss = criteon(logits, target) optimizer.zero_grad() loss.backward() # print(w1.grad.norm(), w2.grad.norm()) optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) test_loss = 0 correct = 0 for data, target in val_loader: data = data.view(-1, 28 * 28) data, target = data.to(device), target.cuda() logits = net(data) test_loss += criteon(logits, target).item() pred = logits.data.max(1)[1] correct += pred.eq(target.data).sum() test_loss /= len(val_loader.dataset) print('\nVAL set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(val_loader.dataset), 100. * correct / len(val_loader.dataset)))test_loss = 0correct = 0for data, target in test_loader: data = data.view(-1, 28 * 28) data, target = data.to(device), target.cuda() logits = net(data) test_loss += criteon(logits, target).item() pred = logits.data.max(1)[1] correct += pred.eq(target.data).sum()test_loss /= len(test_loader.dataset)print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))