import torchfrom torch import nnfrom torch.nn import functional as Fclass ResBlk(nn.Module): """ resnet block """ def __init__(self, ch_in, ch_out, stride=1): """ :param ch_in: :param ch_out: """ super(ResBlk, self).__init__() # we add stride support for resbok, which is distinct from tutorials. self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1) self.bn1 = nn.BatchNorm2d(ch_out) self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(ch_out) self.extra = nn.Sequential() if ch_out != ch_in: # [b, ch_in, h, w] => [b, ch_out, h, w] self.extra = nn.Sequential( nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride), nn.BatchNorm2d(ch_out) ) def forward(self, x): """ :param x: [b, ch, h, w] :return: """ out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) # short cut. # extra module: [b, ch_in, h, w] => [b, ch_out, h, w] # element-wise add: out = self.extra(x) + out out = F.relu(out) return outclass ResNet18(nn.Module): def __init__(self): super(ResNet18, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0), nn.BatchNorm2d(64) ) # followed 4 blocks # [b, 64, h, w] => [b, 128, h ,w] self.blk1 = ResBlk(64, 128, stride=2) # [b, 128, h, w] => [b, 256, h, w] self.blk2 = ResBlk(128, 256, stride=2) # # [b, 256, h, w] => [b, 512, h, w] self.blk3 = ResBlk(256, 512, stride=2) # # [b, 512, h, w] => [b, 1024, h, w] self.blk4 = ResBlk(512, 512, stride=2) self.outlayer = nn.Linear(512*1*1, 10) def forward(self, x): """ :param x: :return: """ x = F.relu(self.conv1(x)) # [b, 64, h, w] => [b, 1024, h, w] x = self.blk1(x) x = self.blk2(x) x = self.blk3(x) x = self.blk4(x) # print('after conv:', x.shape) #[b, 512, 2, 2] # [b, 512, h, w] => [b, 512, 1, 1] x = F.adaptive_avg_pool2d(x, [1, 1]) # print('after pool:', x.shape) x = x.view(x.size(0), -1) x = self.outlayer(x) return xdef main(): blk = ResBlk(64, 128, stride=4) tmp = torch.randn(2, 64, 32, 32) out = blk(tmp) print('block:', out.shape) x = torch.randn(2, 3, 32, 32) model = ResNet18() out = model(x) print('resnet:', out.shape)if __name__ == '__main__': main()
import torchfrom torch.utils.data import DataLoaderfrom torchvision import datasetsfrom torchvision import transformsfrom torch import nn, optimfrom lenet5 import Lenet5from resnet import ResNet18def main(): batchsz = 128 cifar_train = datasets.CIFAR10('cifar', True, transform=transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), download=True) cifar_train = DataLoader(cifar_train, batch_size=batchsz, shuffle=True) cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), download=True) cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True) x, label = iter(cifar_train).next() print('x:', x.shape, 'label:', label.shape) device = torch.device('cuda') # model = Lenet5().to(device) model = ResNet18().to(device) criteon = nn.CrossEntropyLoss().to(device) optimizer = optim.Adam(model.parameters(), lr=1e-3) print(model) for epoch in range(1000): model.train() for batchidx, (x, label) in enumerate(cifar_train): # [b, 3, 32, 32] # [b] x, label = x.to(device), label.to(device) logits = model(x) # logits: [b, 10] # label: [b] # loss: tensor scalar loss = criteon(logits, label) # backprop optimizer.zero_grad() loss.backward() optimizer.step() print(epoch, 'loss:', loss.item()) model.eval() with torch.no_grad(): # test total_correct = 0 total_num = 0 for x, label in cifar_test: # [b, 3, 32, 32] # [b] x, label = x.to(device), label.to(device) # [b, 10] logits = model(x) # [b] pred = logits.argmax(dim=1) # [b] vs [b] => scalar tensor correct = torch.eq(pred, label).float().sum().item() total_correct += correct total_num += x.size(0) # print(correct) acc = total_correct / total_num print(epoch, 'test acc:', acc)if __name__ == '__main__': main()
import torchfrom torch import nnfrom torch.nn import functional as Fclass Lenet5(nn.Module): """ for cifar10 dataset. """ def __init__(self): super(Lenet5, self).__init__() self.conv_unit = nn.Sequential( # x: [b, 3, 32, 32] => [b, 16, ] nn.Conv2d(3, 16, kernel_size=5, stride=1, padding=0), nn.MaxPool2d(kernel_size=2, stride=2, padding=0), # nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=0), nn.MaxPool2d(kernel_size=2, stride=2, padding=0), # ) # flatten # fc unit self.fc_unit = nn.Sequential( nn.Linear(32*5*5, 32), nn.ReLU(), # nn.Linear(120, 84), # nn.ReLU(), nn.Linear(32, 10) ) # [b, 3, 32, 32] tmp = torch.randn(2, 3, 32, 32) out = self.conv_unit(tmp) # [b, 16, 5, 5] print('conv out:', out.shape) # # use Cross Entropy Loss # self.criteon = nn.CrossEntropyLoss() def forward(self, x): """ :param x: [b, 3, 32, 32] :return: """ batchsz = x.size(0) # [b, 3, 32, 32] => [b, 16, 5, 5] x = self.conv_unit(x) # [b, 16, 5, 5] => [b, 16*5*5] x = x.view(batchsz, 32*5*5) # [b, 16*5*5] => [b, 10] logits = self.fc_unit(x) # # [b, 10] # pred = F.softmax(logits, dim=1) # loss = self.criteon(logits, y) return logitsdef main(): net = Lenet5() tmp = torch.randn(2, 3, 32, 32) out = net(tmp) print('lenet out:', out.shape)if __name__ == '__main__': main()