参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
完全背包
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
同样leetcode上没有纯完全背包问题,都是需要完全背包的各种应用,需要转化成完全背包问题,所以我这里还是以纯完全背包问题进行讲解理论和原理。
在下面的讲解中,我依然举这个例子:
背包最大重量为4。
物品为:
| 重量 | 价值 | |
|---|---|---|
| 物品0 | 1 | 15 |
| 物品1 | 3 | 20 |
| 物品2 | 4 | 30 |
每件商品都有无限个!
问背包能背的物品最大价值是多少?
01背包和完全背包唯一不同就是体现在遍历顺序上,所以本文就不去做动规五部曲了,我们直接针对遍历顺序经行分析!
关于01背包我如下两篇已经进行深入分析了:
首先在回顾一下01背包的核心代码
for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}
我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。
而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:
// 先遍历物品,再遍历背包for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}
至于为什么,我在动态规划:关于01背包问题,你该了解这些!(滚动数组)中也做了讲解。
dp状态图如下:

相信很多同学看网上的文章,关于完全背包介绍基本就到为止了。
其实还有一个很重要的问题,为什么遍历物品在外层循环,遍历背包容量在内层循环?
这个问题很多题解关于这里都是轻描淡写就略过了,大家都默认 遍历物品在外层,遍历背包容量在内层,好像本应该如此一样,那么为什么呢?
难道就不能遍历背包容量在外层,遍历物品在内层?
看过这两篇的话:
就知道了,01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。
在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序同样无所谓!
因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。
遍历物品在外层循环,遍历背包容量在内层循环,状态如图:

遍历背包容量在外层循环,遍历物品在内层循环,状态如图:

看了这两个图,大家就会理解,完全背包中,两个for循环的先后循序,都不影响计算dp[j]所需要的值(这个值就是下标j之前所对应的dp[j])。
先遍历背包在遍历物品,代码如下:
// 先遍历背包,再遍历物品for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量for(int i = 0; i < weight.size(); i++) { // 遍历物品if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}cout << endl;}
C++测试代码
完整的C++测试代码如下:
// 先遍历物品,在遍历背包void test_CompletePack() {vector<int> weight = {1, 3, 4};vector<int> value = {15, 20, 30};int bagWeight = 4;vector<int> dp(bagWeight + 1, 0);for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = weight[i]; j <= bagWeight; j++) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}cout << dp[bagWeight] << endl;}int main() {test_CompletePack();}
// 先遍历背包,再遍历物品void test_CompletePack() {vector<int> weight = {1, 3, 4};vector<int> value = {15, 20, 30};int bagWeight = 4;vector<int> dp(bagWeight + 1, 0);for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量for(int i = 0; i < weight.size(); i++) { // 遍历物品if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}cout << dp[bagWeight] << endl;}int main() {test_CompletePack();}
总结
细心的同学可能发现,全文我说的都是对于纯完全背包问题,其for循环的先后循环是可以颠倒的!
但如果题目稍稍有点变化,就会体现在遍历顺序上。
如果问装满背包有几种方式的话? 那么两个for循环的先后顺序就有很大区别了,而leetcode上的题目都是这种稍有变化的类型。
这个区别,我将在后面讲解具体leetcode题目中给大家介绍,因为这块如果不结合具题目,单纯的介绍原理估计很多同学会越看越懵!
别急,下一篇就是了!哈哈
最后,又可以出一道面试题了,就是纯完全背包,要求先用二维dp数组实现,然后再用一维dp数组实现,最后在问,两个for循环的先后是否可以颠倒?为什么?
这个简单的完全背包问题,估计就可以难住不少候选人了。
其他语言版本
Java:
//先遍历物品,再遍历背包private static void testCompletePack(){int[] weight = {1, 3, 4};int[] value = {15, 20, 30};int bagWeight = 4;int[] dp = new int[bagWeight + 1];for (int i = 0; i < weight.length; i++){ // 遍历物品for (int j = weight[i]; j <= bagWeight; j++){ // 遍历背包容量dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);}}for (int maxValue : dp){System.out.println(maxValue + " ");}}//先遍历背包,再遍历物品private static void testCompletePackAnotherWay(){int[] weight = {1, 3, 4};int[] value = {15, 20, 30};int bagWeight = 4;int[] dp = new int[bagWeight + 1];for (int i = 1; i <= bagWeight; i++){ // 遍历背包容量for (int j = 0; j < weight.length; j++){ // 遍历物品if (i - weight[j] >= 0){dp[i] = Math.max(dp[i], dp[i - weight[j]] + value[j]);}}}for (int maxValue : dp){System.out.println(maxValue + " ");}}
Python:
# 先遍历物品,再遍历背包def test_complete_pack1():weight = [1, 3, 4]value = [15, 20, 30]bag_weight = 4dp = [0]*(bag_weight + 1)for i in range(len(weight)):for j in range(weight[i], bag_weight + 1):dp[j] = max(dp[j], dp[j - weight[i]] + value[i])print(dp[bag_weight])# 先遍历背包,再遍历物品def test_complete_pack2():weight = [1, 3, 4]value = [15, 20, 30]bag_weight = 4dp = [0]*(bag_weight + 1)for j in range(bag_weight + 1):for i in range(len(weight)):if j >= weight[i]: dp[j] = max(dp[j], dp[j - weight[i]] + value[i])print(dp[bag_weight])if __name__ == '__main__':test_complete_pack1()test_complete_pack2()
Go:
// test_CompletePack1 先遍历物品, 在遍历背包func test_CompletePack1(weight, value []int, bagWeight int) int {// 定义dp数组 和初始化dp := make([]int, bagWeight+1)// 遍历顺序for i := 0; i < len(weight); i++ {// 正序会多次添加 value[i]for j := weight[i]; j <= bagWeight; j++ {// 推导公式dp[j] = max(dp[j], dp[j-weight[i]]+value[i])// debug//fmt.Println(dp)}}return dp[bagWeight]}// test_CompletePack2 先遍历背包, 在遍历物品func test_CompletePack2(weight, value []int, bagWeight int) int {// 定义dp数组 和初始化dp := make([]int, bagWeight+1)// 遍历顺序// j从0 开始for j := 0; j <= bagWeight; j++ {for i := 0; i < len(weight); i++ {if j >= weight[i] {// 推导公式dp[j] = max(dp[j], dp[j-weight[i]]+value[i])}// debug//fmt.Println(dp)}}return dp[bagWeight]}func max(a, b int) int {if a > b {return a}return b}func main() {weight := []int{1, 3, 4}price := []int{15, 20, 30}fmt.Println(test_CompletePack1(weight, price, 4))fmt.Println(test_CompletePack2(weight, price, 4))}
Javascript:
// 先遍历物品,再遍历背包容量function test_completePack1() {let weight = [1, 3, 5]let value = [15, 20, 30]let bagWeight = 4let dp = new Array(bagWeight + 1).fill(0)for(let i = 0; i <= weight.length; i++) {for(let j = weight[i]; j <= bagWeight; j++) {dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i])}}console.log(dp)}// 先遍历背包容量,再遍历物品function test_completePack2() {let weight = [1, 3, 5]let value = [15, 20, 30]let bagWeight = 4let dp = new Array(bagWeight + 1).fill(0)for(let j = 0; j <= bagWeight; j++) {for(let i = 0; i < weight.length; i++) {if (j >= weight[i]) {dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i])}}}console.log(2, dp);}

