Tensors (张量)

Tensors 类似于 NumPy 的 ndarrays ,同时 Tensors 可以使用 GPU 进行计算。

  1. from __future__ import print_function # 这一行可以用来在python2.x中使用python3.x的print语法
  2. import torch

构造一个 5x3 矩阵,不初始化。

  1. x = torch.empty(5,3)
  2. print(x)

输出:

tensor(1.00000e-04 *
       [[-0.0000,  0.0000,  1.5135],
        [ 0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000]])

构造一个随机初始化的矩阵:

x = torch.rand(5,3)
print(x)

输出:

tensor([[ 0.6291,  0.2581,  0.6414],
        [ 0.9739,  0.8243,  0.2276],
        [ 0.4184,  0.1815,  0.5131],
        [ 0.5533,  0.5440,  0.0718],
        [ 0.2908,  0.1850,  0.5297]])

构造一个矩阵全为 0,而且数据类型是 long.

x = torch.zeros(5,3,dtype=torch.long)
print(x)

输出:

tensor([[ 0,  0,  0],
        [ 0,  0,  0],
        [ 0,  0,  0],
        [ 0,  0,  0],
        [ 0,  0,  0]])

构造一个张量,直接使用数据:

x = torch.tensor([5.5, 3])
print(x)

输出:

tensor([ 5.5000,  3.0000])

创建一个 tensor 基于已经存在的 tensor。

x = x.new_ones(5, 3, dtype=torch.double) # new_* methods take in sizes
print(x)

x = torch.randn_like(x,dtype=torch.float) # override dtype!
print(x) # result has the same size

输出:

tensor([[ 1.,  1.,  1.],
        [ 1.,  1.,  1.],
        [ 1.,  1.,  1.],
        [ 1.,  1.,  1.],
        [ 1.,  1.,  1.]], dtype=torch.float64)
tensor([[-0.2183,  0.4477, -0.4053],
        [ 1.7353, -0.0048,  1.2177],
        [-1.1111,  1.0878,  0.9722],
        [-0.7771, -0.2174,  0.0412],
        [-2.1750,  1.3609, -0.3322]])

获取它的维度信息: x.size()

输出: torch.Size([5, 3])

注意

torch.Size 是一个元组,所以它支持左右的元组操作。

加法

out-place

y=torch.rand(5,3)
x + y

输出:
tensor([[-0.1859,  1.3970,  0.5236],
        [ 2.3854,  0.0707,  2.1970],
        [-0.3587,  1.2359,  1.8951],
        [-0.1189, -0.1376,  0.4647],
        [-1.8968,  2.0164,  0.1092]])

torch.add(x,y)

输出:
tensor([[-0.1859,  1.3970,  0.5236],
        [ 2.3854,  0.0707,  2.1970],
        [-0.3587,  1.2359,  1.8951],
        [-0.1189, -0.1376,  0.4647],
        [-1.8968,  2.0164,  0.1092]])

result=torch.empty(5,3)
torch.add(x,y,out=result) #提供一个result作为参数

输出:
tensor([[-0.1859,  1.3970,  0.5236],
        [ 2.3854,  0.0707,  2.1970],
        [-0.3587,  1.2359,  1.8951],
        [-0.1189, -0.1376,  0.4647],
        [-1.8968,  2.0164,  0.1092]])

in-place

# adds x to y
y.add_(x)
print(y)

输出:
tensor([[-0.1859,  1.3970,  0.5236],
        [ 2.3854,  0.0707,  2.1970],
        [-0.3587,  1.2359,  1.8951],
        [-0.1189, -0.1376,  0.4647],
        [-1.8968,  2.0164,  0.1092]])

所有使得张量本身发生变化的操作都有一个后缀”“,例如 x.copy(y), x.t_(), 将会改变x

索引

可以使用标准的numpy类似的索引操作

print(x[:, 1])

Out:
tensor([ 0.4477, -0.0048,  1.0878, -0.2174,  1.3609])

改变大小

torch.view()

x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8)  # the size -1 is inferred from other dimensions
print(x.size(), y.size(), z.size())

输出:
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

如果你有一个元素 tensor ,使用 .item() 来获得这个 value 。

x = torch.randn(1)
print(x)
print(x.item())

Out:
tensor([ 0.9422])
0.9422121644020081