1、从hadoop安装程序里找到wordcount代码如下
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.examples;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount ");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
2.WordCount代码详解
如何运行它,这里不做累述了,大伙可以百度下,网上这方面的资料很多。这里的实例代码是使用新的api,大家可能在很多书籍里看到讲解mapreduce的WordCount实例都是老版本的api,这里我不给出老版本的api,因为老版本的api不太建议使用了,大家做开发最好使用新版本的api,新版本api和旧版本api有区别在哪里:
新的api放在:org.apache.hadoop.mapreduce,旧版api放在:org.apache.hadoop.mapred
新版api使用虚类,而旧版的使用的是接口,虚类更加利于扩展,这个是一个经验,大家可以好好学习下hadoop的这个经验。
其他还有很多区别,都是说明新版本api的优势,因为我提倡使用新版api,这里就不讲这些,因为没必要再用旧版本,因此这种比较也没啥意义了。
下面我对代码做简单的讲解,大家看到要写一个mapreduce程序,我们的实现一个map函数和reduce函数。我们看看map的方法:
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {…}
这里有三个参数,前面两个Object key, Text value就是输入的key和value,第三个参数Context context这是可以记录输入的key和value,例如:context.write(word, one);此外context还会记录map运算的状态。
对于reduce函数的方法:
public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {…}
reduce函数的输入也是一个key/value的形式,不过它的value是一个迭代器的形式Iterable values,也就是说reduce的输入是一个key对应一组的值的value,reduce也有context和map的context作用一致。
至于计算的逻辑就是程序员自己去实现了。
下面就是main函数的调用了,这个我要详细讲述下,首先是:
Configuration conf = new Configuration();
运行mapreduce程序前都要初始化Configuration,该类主要是读取mapreduce系统配置信息,这些信息包括hdfs还有mapreduce,也就是安装hadoop时候的配置文件例如:core-site.xml、hdfs-site.xml和mapred-site.xml等等文件里的信息,有些童鞋不理解为啥要这么做,这个是没有深入思考mapreduce计算框架造成,我们程序员开发mapreduce时候只是在填空,在map函数和reduce函数里编写实际进行的业务逻辑,其它的工作都是交给mapreduce框架自己操作的,但是至少我们要告诉它怎么操作啊,比如hdfs在哪里啊,mapreduce的jobstracker在哪里啊,而这些信息就在conf包下的配置文件里。
接下来的代码是:
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length != 2) {
System.err.println("Usage: wordcount ");
System.exit(2);
}
If的语句好理解,就是运行WordCount程序时候一定是两个参数,如果不是就会报错退出。至于第一句里的GenericOptionsParser类,它是用来解释常用hadoop命令,并根据需要为Configuration对象设置相应的值,其实平时开发里我们不太常用它,而是让类实现Tool接口,然后再main函数里使用ToolRunner运行程序,而ToolRunner内部会调用GenericOptionsParser。
接下来的代码是:
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
第一行就是在构建一个job,在mapreduce框架里一个mapreduce任务也叫mapreduce作业也叫做一个mapreduce的job,而具体的map和reduce运算就是task了,这里我们构建一个job,构建时候有两个参数,一个是conf这个就不累述了,一个是这个job的名称。
第二行就是装载程序员编写好的计算程序,例如我们的程序类名就是WordCount了。这里我要做下纠正,虽然我们编写mapreduce程序只需要实现map函数和reduce函数,但是实际开发我们要实现三个类,第三个类是为了配置mapreduce如何运行map和reduce函数,准确的说就是构建一个mapreduce能执行的job了,例如WordCount类。
第三行和第五行就是装载map函数和reduce函数实现类了,这里多了个第四行,这个是装载Combiner类,这个我后面讲mapreduce运行机制时候会讲述,其实本例去掉第四行也没有关系,但是使用了第四行理论上运行效率会更好。
接下来的代码:
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
这个是定义输出的key/value的类型,也就是最终存储在hdfs上结果文件的key/value的类型。
最后的代码是:
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
第一行就是构建输入的数据文件,第二行是构建输出的数据文件,最后一行如果job运行成功了,我们的程序就会正常退出。