本文是站在小白的角度去讨论布隆过滤器,如果你是科班出身,或者比较聪明,又或者真正想完全搞懂布隆过滤器的可以移步。
不知道从什么时候开始,本来默默无闻的布隆过滤器一下子名声大燥,仿佛身在互联网,做着开发的,无人不知,无人不晓,哪怕对技术不是很关心的小伙伴也听过它的名号。我也花了不少时间去研究布隆过滤器,看了不少博客,无奈不是科班出身,又没有那么聪明的头脑,又比较懒…经过“放弃,拿起,放弃,拿起”的无限轮回,应该算是了解了布隆过滤器的核心思想,所以想给大家分享下。

布隆过滤器的应用

我们先来看下布隆过滤器的应用场景,让大家知道神奇的布隆过滤器到底能做什么。

缓存穿透

我们经常会把一部分数据放在Redis等缓存,比如产品详情。这样有查询请求进来,我们可以根据产品Id直接去缓存中取数据,而不用读取数据库,这是提升性能最简单,最普遍,也是最有效的做法。一般的查询请求流程是这样的:先查缓存,有缓存的话直接返回,如果缓存中没有,再去数据库查询,然后再把数据库取出来的数据放入缓存,一切看起来很美好。但是如果现在有大量请求进来,而且都在请求一个不存在的产品Id,会发生什么?既然产品Id都不存在,那么肯定没有缓存,没有缓存,那么大量的请求都怼到数据库,数据库的压力一下子就上来了,还有可能把数据库打死。
虽然有很多办法都可以解决这问题,但是我们的主角是“布隆过滤器”,没错,“布隆过滤器”就可以解决(缓解)缓存穿透问题。至于为什么说是“缓解”,看下去你就明白了。

大量数据,判断给定的是否在其中

现在有大量的数据,而这些数据的大小已经远远超出了服务器的内存,现在再给你一个数据,如何判断给你的数据在不在其中。如果服务器的内存足够大,那么用HashMap是一个不错的解决方案,理论上的时间复杂度可以达到O(1),但是现在数据的大小已经远远超出了服务器的内存,所以无法使用HashMap,这个时候就可以使用“布隆过滤器”来解决这个问题。但是还是同样的,会有一定的“误判率”。

什么是布隆过滤器

布隆过滤器是一个叫“布隆”的人提出的,它本身是一个很长的二进制向量,既然是二进制的向量,那么显而易见的,存放的不是0,就是1。
现在我们新建一个长度为16的布隆过滤器,默认值都是0,就像下面这样:
布隆过滤器 - 图1
现在需要添加一个数据:
我们通过某种计算方式,比如Hash1,计算出了Hash1(数据)=5,我们就把下标为5的格子改成1,就像下面这样:
布隆过滤器 - 图2
我们又通过某种计算方式,比如Hash2,计算出了Hash2(数据)=9,我们就把下标为9的格子改成1,就像下面这样:
布隆过滤器 - 图3
还是通过某种计算方式,比如Hash3,计算出了Hash3(数据)=2,我们就把下标为2的格子改成1,就像下面这样:
布隆过滤器 - 图4
这样,刚才添加的数据就占据了布隆过滤器“5”,“9”,“2”三个格子。
可以看出,仅仅从布隆过滤器本身而言,根本没有存放完整的数据,只是运用一系列随机映射函数计算出位置,然后填充二进制向量。
这有什么用呢?比如现在再给你一个数据,你要判断这个数据是否重复,你怎么做?
你只需利用上面的三种固定的计算方式,计算出这个数据占据哪些格子,然后看看这些格子里面放置的是否都是1,如果有一个格子不为1,那么就代表这个数字不在其中。这很好理解吧,比如现在又给你了刚才你添加进去的数据,你通过三种固定的计算方式,算出的结果肯定和上面的是一模一样的,也是占据了布隆过滤器“5”,“9”,“2”三个格子。
但是有一个问题需要注意,如果这些格子里面放置的都是1,不一定代表给定的数据一定重复,也许其他数据经过三种固定的计算方式算出来的结果也是相同的。这也很好理解吧,比如我们需要判断对象是否相等,是不可以仅仅判断他们的哈希值是否相等的。
也就是说布隆过滤器只能判断数据是否一定不存在,而无法判断数据是否一定存在。
按理来说,介绍完了新增、查询的流程,就要介绍删除的流程了,但是很遗憾的是布隆过滤器是很难做到删除数据的,为什么?你想想,比如你要删除刚才给你的数据,你把“5”,“9”,“2”三个格子都改成了0,但是可能其他的数据也映射到了“5”,“9”,“2”三个格子啊,这不就乱套了吗?
相信经过我这么一介绍,大家对布隆过滤器应该有一个浅显的认识了,至少你应该清楚布隆过滤器的优缺点了:

  • 优点:由于存放的不是完整的数据,所以占用的内存很少,而且新增,查询速度够快;
  • 缺点: 随着数据的增加,误判率随之增加;无法做到删除数据;只能判断数据是否一定不存在,而无法判断数据是否一定存在。

可以看到,布隆过滤器的优点和缺点一样明显。
在上文中,我举的例子二进制向量长度为16,由三个随机映射函数计算位置,在实际开发中,如果你要添加大量的数据,仅仅16位是远远不够的,为了让误判率降低,我们还可以用更多的随机映射函数、更长的二进制向量去计算位置。

guava实现布隆过滤器

现在相信你对布隆过滤器应该有一个比较感性的认识了,布隆过滤器核心思想其实并不难,难的在于如何设计随机映射函数,到底映射几次,二进制向量的长度设置为多少比较好,这可能就不是一般的开发可以驾驭的了,好在Google大佬给我们提供了开箱即用的组件,来帮助我们实现布隆过滤器,现在就让我们看看怎么Google大佬送给我们的“礼物”吧。
首先在pom引入“礼物”:

  1. <dependency>
  2. <groupId>com.google.guava</groupId>
  3. <artifactId>guava</artifactId>
  4. <version>19.0</version>
  5. </dependency>

然后就可以测试啦:

  1. private static int size = 1000000;//预计要插入多少数据
  2. private static double fpp = 0.01;//期望的误判率
  3. private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size, fpp);
  4. public static void main(String[] args) {
  5. //插入数据
  6. for (int i = 0; i < 1000000; i++) {
  7. bloomFilter.put(i);
  8. }
  9. int count = 0;
  10. for (int i = 1000000; i < 2000000; i++) {
  11. if (bloomFilter.mightContain(i)) {
  12. count++;
  13. System.out.println(i + "误判了");
  14. }
  15. }
  16. System.out.println("总共的误判数:" + count);
  17. }

代码简单分析:
我们定义了一个布隆过滤器,有两个重要的参数,分别是 我们预计要插入多少数据,我们所期望的误判率,误判率不能为0。
我向布隆过滤器插入了0-1000000,然后用1000000-2000000来测试误判率。
运行结果:
1999501误判了 1999567误判了 1999640误判了 1999697误判了 1999827误判了 1999942误判了 总共的误判数:10314
现在总共有100万数据是不存在的,误判了10314次,我们计算下误判率
布隆过滤器 - 图5
和我们定义的期望误判率0.01相差无几。

Redis实现布隆过滤器

①、bitmaps

我们知道计算机是以二进制位作为底层存储的基础单位,一个字节等于8位。
比如“big”字符串是由三个字符组成的,这三个字符对应的ASCII码分为是98、105、103,对应的二进制存储如下:
布隆过滤器 - 图6

在Redis中,Bitmaps 提供了一套命令用来操作类似上面字符串中的每一个位。
一、设置值
setbit key offset value
布隆过滤器 - 图7

我们知道”b”的二进制表示为0110 0010,我们将第7位(从0开始)设置为1,那0110 0011 表示的就是字符“c”,所以最后的字符 “big”变成了“cig”。
二、获取值
gitbit key offset
布隆过滤器 - 图8
三、获取位图指定范围值为1的个数
bitcount key [start end]
如果不指定,那就是获取全部值为1的个数。
注意:start和end指定的是字节的个数,而不是位数组下标。
布隆过滤器 - 图9

②、Redisson

Redis 实现布隆过滤器的底层就是通过 bitmap 这种数据结构,至于如何实现,这里就不重复造轮子了,介绍业界比较好用的一个客户端工具——Redisson。
Redisson 是用于在 Java 程序中操作 Redis 的库,利用Redisson 我们可以在程序中轻松地使用 Redis。
下面我们就通过 Redisson 来构造布隆过滤器。

  package com.ys.rediscluster.bloomfilter.redisson;

  import org.redisson.Redisson;
  import org.redisson.api.RBloomFilter;
  import org.redisson.api.RedissonClient;
  import org.redisson.config.Config;

 public class RedissonBloomFilter {

     public static void main(String[] args) {
         Config config = new Config();
         config.useSingleServer().setAddress("redis://127.0.0.1:6379");
         config.useSingleServer().setPassword("123");
         //构造Redisson
         RedissonClient redisson = Redisson.create(config);

         RBloomFilter<String> bloomFilter = redisson.getBloomFilter("phoneList");
         //初始化布隆过滤器:预计元素为100000000L,误差率为3%
         bloomFilter.tryInit(100000000L,0.03);
         //将号码10086插入到布隆过滤器中
         bloomFilter.add("10086");

         //判断下面号码是否在布隆过滤器中
         System.out.println(bloomFilter.contains("123456"));//false
         System.out.println(bloomFilter.contains("10086"));//true
     }
 }