1. 生成Series数据
import pandas as pdimport numpy as npser = pd.Series(np.random.randint(1, 10, 4))print(ser)0 91 82 33 8dtype: int32
2. 求幂
print(np.exp(ser))0 8103.0839281 2980.9579872 20.0855373 2980.957987dtype: float64
3. 生成DataFrame数据1
df = pd.DataFrame(np.random.randint(1, 10, (2, 3)), columns=['a', 'b', 'c'])print(df)a b c0 5 1 21 8 9 2
4. 做乘除运算并取一个sin
print(np.sin(df*np.pi/4))a b c0 -7.071068e-01 0.707107 1.01 -2.449294e-16 0.707107 1.0
5. 随机生成特定条件的DataFrame数据
A = pd.DataFrame(np.random.randint(1, 10, (3, 4)))print(A)0 1 2 30 9 2 3 91 3 9 3 32 7 1 1 1
6. 索引对齐
A = pd.Series([2, 4, 6], index=[0, 1, 2])B = pd.Series([1, 3, 5], index=[1, 2, 3])print(A)print(B)print(A+B) # 任何缺失用NaN填充0 21 42 6dtype: int641 12 33 5dtype: int640 NaN1 5.02 9.03 NaNdtype: float64
7. 不同索引值数据相加
print(A.add(B, fill_value=0))0 2.01 5.02 9.03 5.0dtype: float64
8. 不同布局DataFrame数据相加
A = pd.DataFrame(np.random.randint(1, 10, (2, 3)))B = pd.DataFrame(np.random.randint(1, 10, (3, 4)))print("A=\n", A)print("B=\n", B)print(A+B)A=0 1 20 1 6 81 4 8 6B=0 1 2 30 5 6 5 81 3 4 9 12 5 2 4 90 1 2 30 6.0 12.0 13.0 NaN1 7.0 12.0 15.0 NaN2 NaN NaN NaN NaN
9. 指定列表为索引值
指定索引值,直接用列表,可以自动分开加到里面
A = pd.DataFrame(np.random.randint(1, 10, (2, 2)), columns=list("AB"))B = pd.DataFrame(np.random.randint(1, 10, (3, 3)), columns=list("BAC"))print("A=\n", A)print("B=\n", B)A=A B0 4 91 2 4B=B A C0 1 1 11 4 1 22 1 8 7
10. 计算均值
print('A的均值', np.mean(A.values))A的均值 4.75
11. 均值填充缺失值
print(A.add(B))print(A.add(B, fill_value=np.mean(A.values))) # 将A的均值填充到缺失值里面去相加A B C0 5.0 10.0 NaN1 3.0 8.0 NaN2 NaN NaN NaNA B C0 5.00 10.00 5.751 3.00 8.00 6.752 12.75 5.75 11.75
12. 按行来减
A = np.random.randint(1, 10, (3, 4))print("A=\n", A)print(A-A[0])A=[[3 7 4 4][8 3 7 6][6 6 2 6]][[ 0 0 0 0][ 5 -4 3 2][ 3 -1 -2 2]]
13. 将ndarray转换为DataFrame并指定列名
df = pd.DataFrame(A, columns=list('QUWE'))print(df)Q U W E0 3 7 4 41 8 3 7 62 6 6 2 6
14. 按列计算,用的是DataFrame里面的减函数
print(df.subtract(df['U'], axis=0))Q U W E0 -4 0 -3 -31 5 0 4 32 0 0 -4 0
15. 隐式索引
取第0行,限定步长为2
half = df.iloc[0, ::2]print(half)Q 3W 4Name: 0, dtype: int32
