实验环境:阿里云ECS实例

实验目标

  1. 通过二进制方式部署(containerd容器运行时)Kubernetes集群
  2. 对k8s各项组件配置深入了解
  3. 通过负载均衡器(nginx+keepalived)实现高可用集群

实验步骤—-

1. 前置规划

1.1 环境准备

  • 建议最小硬件配置: 2核Cpu 2G内存 30G硬盘
  • 需要从外网拉取容器镜像(内网环境需要提前下载好容器镜像离线导入节点)
操作系统 Centos 7.x
容器运行时 Containerd v1.6.9
Kubernetes Kubernetes v1.25.2
Etcdctl Etcd v3.5.1
Cfssl Cfssl 1.2.0
  • 服务器规划为1Master 1Node 或 2Master 1Node 1Lb
HostName IP 组件
k8s-master01 192.168.22.88 Kube-apiserver,Kube-controller-manager,kube-scheduler,kubelet,kube-proxy,containerd,etcd,nginx,keepalived
k8s-master02 (可选项) 192.168.22.89 Kube-apiserver,Kube-controller-manager,kube-scheduler,kubelet,kube-proxy,containerd,etcd,nginx,keepalived
k8s-node01 192.168.22.90 kubelet,kube-proxy,containerd
LbVip(可选项) 192.168.22.91 Slb或nginx之类四层LB
  • 简单k8s架构图

实验课题:二进制部署Kubernetes - 图1

  • 高可用集群架构图

实验课题:二进制部署Kubernetes - 图2

1.2 服务器初始化配置

  1. # 关闭防火墙
  2. systemctl stop firewalld
  3. systemctl disable firewalld
  4. # 关闭selinux
  5. sed -i 's/enforcing/disabled/' /etc/selinux/config # 永久
  6. setenforce 0 # 临时
  7. # 关闭swap
  8. swapoff -a # 临时
  9. sed -ri 's/.*swap.*/#&/' /etc/fstab # 永久
  10. # 根据规划设置主机名
  11. hostnamectl set-hostname <hostname>
  12. # 在master添加hosts
  13. cat >> /etc/hosts << EOF
  14. 192.168.22.88 k8s-master01
  15. 192.168.22.89 k8s-master02
  16. 192.168.22.90 k8s-node01
  17. EOF
  18. #安装依赖包
  19. yum -y install wget jq psmisc vim net-tools nfs-utils telnet yum-utils device-mapper-persistent-data lvm2 git network-scripts tar curl -y
  20. #启用ipvs
  21. yum install ipvsadm ipset sysstat conntrack libseccomp -y
  22. mkdir -p /etc/modules-load.d/
  23. cat >> /etc/modules-load.d/ipvs.conf << EOF
  24. ip_vs
  25. ip_vs_rr
  26. ip_vs_wrr
  27. ip_vs_sh
  28. nf_conntrack
  29. ip_tables
  30. ip_set
  31. xt_set
  32. ipt_set
  33. ipt_rpfilter
  34. ipt_REJECT
  35. ipip
  36. EOF
  37. systemctl restart systemd-modules-load.service
  38. lsmod | grep -e ip_vs -e nf_conntrack
  39. # 将桥接的IPv4流量传递到iptables的链
  40. cat >> /etc/sysctl.d/k8s.conf << EOF
  41. net.ipv4.ip_forward = 1
  42. net.bridge.bridge-nf-call-iptables = 1
  43. vm.overcommit_memory = 1
  44. vm.panic_on_oom = 0
  45. fs.inotify.max_user_watches = 89100
  46. fs.file-max = 52706963
  47. fs.nr_open = 52706963
  48. net.netfilter.nf_conntrack_max = 2310720
  49. net.ipv4.tcp_keepalive_time = 600
  50. net.ipv4.tcp_keepalive_probes = 3
  51. net.ipv4.tcp_keepalive_intvl = 15
  52. net.ipv4.tcp_max_tw_buckets = 36000
  53. net.ipv4.tcp_tw_reuse = 1
  54. net.ipv4.tcp_max_orphans = 327680
  55. net.ipv4.tcp_orphan_retries = 3
  56. net.ipv4.tcp_syncookies = 1
  57. net.ipv4.tcp_max_syn_backlog = 16384
  58. net.ipv4.tcp_max_syn_backlog = 16384
  59. net.ipv4.tcp_timestamps = 0
  60. net.core.somaxconn = 16384
  61. net.ipv6.conf.all.disable_ipv6 = 0
  62. net.ipv6.conf.default.disable_ipv6 = 0
  63. net.ipv6.conf.lo.disable_ipv6 = 0
  64. net.ipv6.conf.all.forwarding = 1
  65. EOF
  66. modprobe br_netfilter
  67. lsmod |grep conntrack
  68. modprobe ip_conntrack
  69. sysctl -p /etc/sysctl.d/k8s.conf # 生效
  70. # 时间同步
  71. yum install ntpdate -y
  72. ntpdate time.windows.com

2. 部署Containerd(每台服务器都需要操作)

2.1 安装containerd

  1. ### 加载 containerd模块
  2. cat <<EOF | sudo tee /etc/modules-load.d/containerd.conf
  3. overlay
  4. br_netfilter
  5. EOF
  6. systemctl restart systemd-modules-load.service
  7. cat <<EOF | sudo tee /etc/sysctl.d/99-kubernetes-cri.conf
  8. net.bridge.bridge-nf-call-iptables = 1
  9. net.ipv4.ip_forward = 1
  10. net.bridge.bridge-nf-call-ip6tables = 1
  11. EOF
  12. # 加载内核
  13. sysctl --system
  1. #获取阿里云docker源
  2. wget -O /etc/yum.repos.d/docker-ce.repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
  3. yum list | grep containerd
  4. yum install -y containerd.io
  5. #生成containerd的配置文件
  6. mkdir /etc/containerd -p
  7. #生成配置文件
  8. containerd config default > /etc/containerd/config.toml
  9. #编辑配置文件
  10. vim /etc/containerd/config.toml
  11. # SystemdCgroup = false 改为 SystemdCgroup = true
  12. # sandbox_image = "k8s.gcr.io/pause:3.6"
  13. # 改为:
  14. # sandbox_image = "registry.aliyuncs.com/google_containers/pause:3.6"
  15. systemctl enable containerd
  16. systemctl start containerd
  17. ctr version
  18. runc -version
  • Delegate**: 这个选项允许 containerd 以及运行时自己管理自己创建容器的 cgroups。如果不设置这个选项,systemd 就会将进程移到自己的 cgroups 中,从而导致 containerd 无法正确获取容器的资源使用情况。**
  • KillMode**: 这个选项用来处理 containerd 进程被杀死的方式。默认情况下,systemd 会在进程的 cgroup 中查找并杀死 containerd 的所有子进程。KillMode 字段可以设置的值如下。**
    • control-group**(默认值):当前控制组里面的所有子进程,都会被杀掉**
    • process**:只杀主进程**
    • mixed**:主进程将收到 SIGTERM 信号,子进程收到 SIGKILL 信号**
    • none**:没有进程会被杀掉,只是执行服务的 stop 命令**

我们需要将 KillMode 的值设置为 process,这样可以确保升级或重启 containerd 时不杀死现有的容器

2.2 配置镜像加速

  1. # vim /etc/containerd/config.toml
  2. [plugins."io.containerd.grpc.v1.cri".registry]
  3. [plugins."io.containerd.grpc.v1.cri".registry.mirrors]
  4. [plugins."io.containerd.grpc.v1.cri".registry.mirrors."docker.io"]
  5. endpoint = ["https://gaatfjuv.mirror.aliyuncs.com"]
  6. [plugins."io.containerd.grpc.v1.cri".registry.mirrors."k8s.gcr.io"]
  7. endpoint = ["https://registry.aliyuncs.com/k8sxio"]
  • registry.mirrors.”xxx”**: 表示需要配置 mirror 的镜像仓库,例如 registry.mirrors.”docker.io” 表示配置 docker.io 的 mirror。**
  • endpoint**: 表示提供 mirror 的镜像加速服务,比如我们可以注册一个阿里云的镜像服务来作为 docker.io 的 mirror。**
  1. #配置后重启
  2. systemctl restart containerd

3. 部署Etcd集群

Etcd 是一个分布式键值存储系统,Kubernetes使用Etcd进行数据存储,所以先准备一个Etcd数据库,为解决Etcd单点故障,应采用集群方式部署,这里使用3台组建集群,可容忍1台机器故障,当然,你也可以使用5台组建集群,可容忍2台机器故障。

3.1 使用cfssl证书生成工具

cfssl是一个开源的证书管理工具,使用json文件生成证书,相比openssl更方便使用。

这里使用k8s-master01作为终端操作

  1. chmod +x cfssl_linux-amd64 cfssljson_linux-amd64 cfssl-certinfo_linux-amd64
  2. mv cfssl_linux-amd64 /usr/local/bin/cfssl
  3. mv cfssljson_linux-amd64 /usr/local/bin/cfssljson
  4. mv cfssl-certinfo_linux-amd64 /usr/bin/cfssl-certinfo

3.2 生成Etcd证书

3.2.1 创建工作目录:

  1. mkdir -p ~/TLS/{etcd,k8s}
  2. cd ~/TLS/etcd

自签CA

  1. cat > ca-config.json << EOF
  2. {
  3. "signing": {
  4. "default": {
  5. "expiry": "87600h"
  6. },
  7. "profiles": {
  8. "www": {
  9. "expiry": "87600h",
  10. "usages": [
  11. "signing",
  12. "key encipherment",
  13. "server auth",
  14. "client auth"
  15. ]
  16. }
  17. }
  18. }
  19. }
  20. EOF
  21. cat > ca-csr.json << EOF
  22. {
  23. "CN": "etcd CA",
  24. "key": {
  25. "algo": "rsa",
  26. "size": 2048
  27. },
  28. "names": [
  29. {
  30. "C": "CN",
  31. "L": "Beijing",
  32. "ST": "Beijing"
  33. }
  34. ]
  35. }
  36. EOF
生成证书
  1. cfssl gencert -initca ca-csr.json | cfssljson -bare ca -
  2. #会生成ca.pem和ca-key.pem文件

3.2.2 使用自签CA签发Etcd HTTPS证书 创建证书申请文件
  1. cat > server-csr.json << EOF
  2. {
  3. "CN": "etcd",
  4. "hosts": [
  5. "192.168.22.88",
  6. "192.168.22.89",
  7. "192.168.22.90",
  8. "192.168.22.91",
  9. "192.168.22.92",
  10. ],
  11. "key": {
  12. "algo": "rsa",
  13. "size": 2048
  14. },
  15. "names": [
  16. {
  17. "C": "CN",
  18. "L": "BeiJing",
  19. "ST": "BeiJing"
  20. }
  21. ]
  22. }
  23. EOF
注:上述文件hosts字段中IP为所有etcd节点的集群内部通信IP,一个都不能少!为了方便后期扩容可以多写几个预留的IP。 生成证书
  1. cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=www server-csr.json | cfssljson -bare server
  2. #会生成server.pem和server-key.pem文件。

3.3 部署Etcd

以下在k8s-master01上操作,为简化操作,会将k8s-master01生成的所有文件拷贝到其他节点

3.3.1 创建工作目录并解压二进制包

  1. mkdir /opt/etcd/{bin,cfg,ssl} -p
  2. tar zxvf etcd-v3.5.1-linux-amd64.tar.gz
  3. mv etcd-v3.5.1-linux-amd64/{etcd,etcdctl} /opt/etcd/bin/

3.3.2 创建etcd配置文件

  1. cat > /opt/etcd/cfg/etcd.conf << EOF
  2. #[Member]
  3. ETCD_NAME="etcd-1"
  4. ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
  5. ETCD_LISTEN_PEER_URLS="https://192.168.22.88:2380"
  6. ETCD_LISTEN_CLIENT_URLS="https://192.168.22.88:2379"
  7. #[Clustering]
  8. ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.22.88:2380"
  9. ETCD_ADVERTISE_CLIENT_URLS="https://192.168.22.88:2379"
  10. ETCD_INITIAL_CLUSTER="etcd-1=https://192.168.22.88:2380,etcd-2=https://192.168.22.89:2380,etcd-3=https://192.168.22.90:2380"
  11. ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
  12. ETCD_INITIAL_CLUSTER_STATE="new"
  13. EOF
ETCD_NAME:节点名称,集群中唯一 ETCD_DATA_DIR:数据目录 ETCD_LISTEN_PEER_URLS:集群通信监听地址 ETCD_LISTEN_CLIENT_URLS:客户端访问监听地址 ETCD_INITIAL_ADVERTISE_PEERURLS:集群通告地址 ETCD_ADVERTISE_CLIENT_URLS:客户端通告地址 ETCD_INITIAL_CLUSTER:集群节点地址 ETCD_INITIALCLUSTER_TOKEN:集群Token • ETCD_INITIALCLUSTER_STATE:加入集群的当前状态,new是新集群,existing表示加入已有集群

3.3.3 systemd管理etcd

  1. cat > /usr/lib/systemd/system/etcd.service << EOF
  2. [Unit]
  3. Description=Etcd Server
  4. After=network.target
  5. After=network-online.target
  6. Wants=network-online.target
  7. [Service]
  8. Type=notify
  9. EnvironmentFile=/opt/etcd/cfg/etcd.conf
  10. ExecStart=/opt/etcd/bin/etcd \
  11. --cert-file=/opt/etcd/ssl/server.pem \
  12. --key-file=/opt/etcd/ssl/server-key.pem \
  13. --peer-cert-file=/opt/etcd/ssl/server.pem \
  14. --peer-key-file=/opt/etcd/ssl/server-key.pem \
  15. --trusted-ca-file=/opt/etcd/ssl/ca.pem \
  16. --peer-trusted-ca-file=/opt/etcd/ssl/ca.pem \
  17. --logger=zap
  18. Restart=on-failure
  19. LimitNOFILE=65536
  20. [Install]
  21. WantedBy=multi-user.target
  22. EOF

3.3.4 拷贝刚才生成的证书

  1. cp ~/TLS/etcd/ca*pem ~/TLS/etcd/server*pem /opt/etcd/ssl/
  2. #把刚才生成的证书拷贝到配置文件中的路径

3.3.5 启动并设置开机启动

  1. systemctl daemon-reload
  2. systemctl start etcd
  3. systemctl enable etcd

3.4 部署Etcd集群

3.4.1 将k8s-master01所有生成的文件copy到k8s-master02和k8s-node01并配置

  1. scp -r /opt/etcd/ root@192.168.22.89:/opt/
  2. scp /usr/lib/systemd/system/etcd.service root@192.168.22.89:/usr/lib/systemd/system/
  3. scp -r /opt/etcd/ root@192.168.22.90:/opt/
  4. scp /usr/lib/systemd/system/etcd.service root@192.168.22.90:/usr/lib/systemd/system/

k8s-master02和k8s-node01中分别修改etcd.conf配置文件中的节点名称和当前服务器IP:

  1. vim /opt/etcd/cfg/etcd.conf
  2. #[Member]
  3. ETCD_NAME="etcd-2" # 修改此处,k8s-master02改为etcd-2,k8s-node01改为etcd-3
  4. ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
  5. ETCD_LISTEN_PEER_URLS="https://192.168.22.89:2380" # 修改此处为当前服务器IP
  6. ETCD_LISTEN_CLIENT_URLS="https://192.168.22.89:2379" # 修改此处为当前服务器IP
  7. #[Clustering]
  8. ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.22.89:2380" # 修改此处为当前服务器IP
  9. ETCD_ADVERTISE_CLIENT_URLS="https://192.168.22.89:2379" # 修改此处为当前服务器IP
  10. ETCD_INITIAL_CLUSTER="etcd-1=https://192.168.22.88:2380,etcd-2=https://192.168.22.89:2380,etcd-3=https://192.168.22.90:2380"
  11. ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
  12. ETCD_INITIAL_CLUSTER_STATE="new"
  1. vim /opt/etcd/cfg/etcd.conf
  2. #[Member]
  3. ETCD_NAME="etcd-3" # 修改此处,k8s-master02改为etcd-2,k8s-node01改为etcd-3
  4. ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
  5. ETCD_LISTEN_PEER_URLS="https://192.168.22.90:2380" # 修改此处为当前服务器IP
  6. ETCD_LISTEN_CLIENT_URLS="https://192.168.22.90:2379" # 修改此处为当前服务器IP
  7. #[Clustering]
  8. ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.22.90:2380" # 修改此处为当前服务器IP
  9. ETCD_ADVERTISE_CLIENT_URLS="https://192.168.22.90:2379" # 修改此处为当前服务器IP
  10. ETCD_INITIAL_CLUSTER="etcd-1=https://192.168.22.88:2380,etcd-2=https://192.168.22.89:2380,etcd-3=https://192.168.22.90:2380"
  11. ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
  12. ETCD_INITIAL_CLUSTER_STATE="new"

3.4.2 启动etcd并设置开机启动

  1. systemctl daemon-reload
  2. systemctl start etcd
  3. systemctl enable etcd

3.4.3 查看集群状态

  1. ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.22.88:2379,https://192.168.22.89:2379,https://192.168.22.90:2379" endpoint health --write-out=table
  2. +----------------------------+--------+-------------+-------+
  3. | ENDPOINT | HEALTH | TOOK | ERROR |
  4. +----------------------------+--------+-------------+-------+
  5. | https://192.168.22.88:2379 | true | 10.301506ms | |
  6. | https://192.168.22.89:2379 | true | 12.87467ms | |
  7. | https://192.168.22.90:2379 | true | 13.225954ms | |
  8. +----------------------------+--------+-------------+-------+
  9. #若有错误 journalctl -u etcd 看日志

4. 部署Master节点

4.1 生成kube-apiserver证书

  1. #自签证书颁发机构(CA)
  2. cd ~/TLS/k8s
  3. cat > ca-config.json << EOF
  4. {
  5. "signing": {
  6. "default": {
  7. "expiry": "87600h"
  8. },
  9. "profiles": {
  10. "kubernetes": {
  11. "expiry": "87600h",
  12. "usages": [
  13. "signing",
  14. "key encipherment",
  15. "server auth",
  16. "client auth"
  17. ]
  18. }
  19. }
  20. }
  21. }
  22. EOF
  23. cat > ca-csr.json << EOF
  24. {
  25. "CN": "kubernetes",
  26. "key": {
  27. "algo": "rsa",
  28. "size": 2048
  29. },
  30. "names": [
  31. {
  32. "C": "CN",
  33. "L": "Beijing",
  34. "ST": "Beijing",
  35. "O": "k8s",
  36. "OU": "System"
  37. }
  38. ]
  39. }
  40. EOF

生成证书

  1. cfssl gencert -initca ca-csr.json | cfssljson -bare ca -

4.2 使用自签CA签发kube-apiserver HTTPS证书

创建证书申请文件:(hosts字段中IP为所有Master/LB/VIP IP,为了方便后期扩容可以多写几个预留的IP
  1. cat > server-csr.json << EOF
  2. {
  3. "CN": "kubernetes",
  4. "hosts": [
  5. "10.0.0.1",
  6. "127.0.0.1",
  7. "192.168.22.88",
  8. "192.168.22.89",
  9. "192.168.22.90",
  10. "192.168.22.91",
  11. "192.168.22.92",
  12. "kubernetes",
  13. "kubernetes.default",
  14. "kubernetes.default.svc",
  15. "kubernetes.default.svc.cluster",
  16. "kubernetes.default.svc.cluster.local"
  17. ],
  18. "key": {
  19. "algo": "rsa",
  20. "size": 2048
  21. },
  22. "names": [
  23. {
  24. "C": "CN",
  25. "L": "BeiJing",
  26. "ST": "BeiJing",
  27. "O": "k8s",
  28. "OU": "System"
  29. }
  30. ]
  31. }
  32. EOF

生成证书

  1. cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes server-csr.json | cfssljson -bare server
  2. #会生成server.pem和server-key.pem文件。

4.3 解压二进制包

  1. #https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.25.md
  2. mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}
  3. tar zxvf kubernetes-server-linux-amd64.tar.gz
  4. cd kubernetes/server/bin
  5. cp kube-apiserver kube-scheduler kube-controller-manager /opt/kubernetes/bin
  6. cp kubectl /usr/bin/

4.4 部署kube-apiserver

4.4.1 创建配置文件

  1. cat > /opt/kubernetes/cfg/kube-apiserver.conf << EOF
  2. KUBE_APISERVER_OPTS="--logtostderr=false \\
  3. --v=2 \\
  4. --log-dir=/opt/kubernetes/logs \\
  5. --etcd-servers=https://192.168.22.88:2379,https://192.168.22.89:2379,https://192.168.22.90:2379 \\
  6. --bind-address=192.168.22.88 \\
  7. --secure-port=6443 \\
  8. --advertise-address=192.168.22.88 \\
  9. --allow-privileged=true \\
  10. --service-cluster-ip-range=10.0.0.0/24 \\
  11. --enable-admission-plugins=NodeRestriction \\
  12. --authorization-mode=RBAC,Node \\
  13. --enable-bootstrap-token-auth=true \\
  14. --token-auth-file=/opt/kubernetes/cfg/token.csv \\
  15. --service-node-port-range=30000-32767 \\
  16. --kubelet-client-certificate=/opt/kubernetes/ssl/server.pem \\
  17. --kubelet-client-key=/opt/kubernetes/ssl/server-key.pem \\
  18. --tls-cert-file=/opt/kubernetes/ssl/server.pem \\
  19. --tls-private-key-file=/opt/kubernetes/ssl/server-key.pem \\
  20. --client-ca-file=/opt/kubernetes/ssl/ca.pem \\
  21. --service-account-key-file=/opt/kubernetes/ssl/ca-key.pem \\
  22. --service-account-issuer=api \\
  23. --service-account-signing-key-file=/opt/kubernetes/ssl/ca-key.pem \\
  24. --etcd-cafile=/opt/etcd/ssl/ca.pem \\
  25. --etcd-certfile=/opt/etcd/ssl/server.pem \\
  26. --etcd-keyfile=/opt/etcd/ssl/server-key.pem \\
  27. --requestheader-client-ca-file=/opt/kubernetes/ssl/ca.pem \\
  28. --proxy-client-cert-file=/opt/kubernetes/ssl/server.pem \\
  29. --proxy-client-key-file=/opt/kubernetes/ssl/server-key.pem \\
  30. --requestheader-allowed-names=kubernetes \\
  31. --requestheader-extra-headers-prefix=X-Remote-Extra- \\
  32. --requestheader-group-headers=X-Remote-Group \\
  33. --requestheader-username-headers=X-Remote-User \\
  34. --enable-aggregator-routing=true \\
  35. --audit-log-maxage=30 \\
  36. --audit-log-maxbackup=3 \\
  37. --audit-log-maxsize=100 \\
  38. --audit-log-path=/opt/kubernetes/logs/k8s-audit.log"
  39. EOF
—logtostderr:启用日志 —-v:日志等级 —log-dir:日志目录 —etcd-servers:etcd集群地址 —bind-address:监听地址 —secure-port:https安全端口 —advertise-address:集群通告地址 —allow-privileged:启用授权 —service-cluster-ip-range:Service虚拟IP地址段 —enable-admission-plugins:准入控制模块 —authorization-mode:认证授权,启用RBAC授权和节点自管理 —enable-bootstrap-token-auth:启用TLS bootstrap机制 —token-auth-file:bootstrap token文件 —service-node-port-range:Service nodeport类型默认分配端口范围 —kubelet-client-xxx:apiserver访问kubelet客户端证书 —tls-xxx-file:apiserver https证书 1.20版本必须加的参数:—service-account-issuer,—service-account-signing-key-file —etcd-xxxfile:连接Etcd集群证书 —audit-log-xxx:审计日志 • 启动聚合层相关配置:—requestheader-client-ca-file,—proxy-client-cert-file,—proxy-client-key-file,—requestheader-allowed-names,—requestheader-extra-headers-prefix,—requestheader-group-headers,—requestheader-username-headers,—enable-aggregator-routing 拷贝刚才生成的证书
  1. cp ~/TLS/k8s/ca*pem ~/TLS/k8s/server*pem /opt/kubernetes/ssl/

4.4.2 启用 TLS Bootstrapping 机制

TLS Bootstraping:Master apiserver启用TLS认证后,Node节点kubelet和kube-proxy要与kube-apiserver进行通信,必须使用CA签发的有效证书才可以,当Node节点很多时,这种客户端证书颁发需要大量工作,同样也会增加集群扩展复杂度。为了简化流程,Kubernetes引入了TLS bootstraping机制来自动颁发客户端证书,kubelet会以一个低权限用户自动向apiserver申请证书,kubelet的证书由apiserver动态签署。所以强烈建议在Node上使用这种方式,目前主要用于kubelet,kube-proxy还是由我们统一颁发一个证书。 TLS bootstraping 工作流程:

实验课题:二进制部署Kubernetes - 图3

创建上述配置文件中token文件:
  1. cat > /opt/kubernetes/cfg/token.csv << EOF
  2. c47ffb939f5ca36231d9e3121a252940,kubelet-bootstrap,10001,"system:node-bootstrapper"
  3. EOF
  4. #格式:token,用户名,UID,用户组
token也可自行生成替换:
  1. head -c 16 /dev/urandom | od -An -t x | tr -d ' '

4.4.3 systemd管理apiserver

  1. cat > /usr/lib/systemd/system/kube-apiserver.service << EOF
  2. [Unit]
  3. Description=Kubernetes API Server
  4. Documentation=https://github.com/kubernetes/kubernetes
  5. [Service]
  6. EnvironmentFile=/opt/kubernetes/cfg/kube-apiserver.conf
  7. ExecStart=/opt/kubernetes/bin/kube-apiserver \$KUBE_APISERVER_OPTS
  8. Restart=on-failure
  9. [Install]
  10. WantedBy=multi-user.target
  11. EOF

4.4.4 启动并设置开机启动

  1. systemctl daemon-reload
  2. systemctl start kube-apiserver
  3. systemctl enable kube-apiserver

4.5 部署kube-controller-manager

4.5.1 创建配置文件

  1. cat > /opt/kubernetes/cfg/kube-controller-manager.conf << EOF
  2. KUBE_CONTROLLER_MANAGER_OPTS="--logtostderr=false \\
  3. --v=2 \\
  4. --log-dir=/opt/kubernetes/logs \\
  5. --leader-elect=true \\
  6. --kubeconfig=/opt/kubernetes/cfg/kube-controller-manager.kubeconfig \\
  7. --bind-address=127.0.0.1 \\
  8. --allocate-node-cidrs=true \\
  9. --cluster-cidr=10.244.0.0/16 \\
  10. --service-cluster-ip-range=10.0.0.0/24 \\
  11. --cluster-signing-cert-file=/opt/kubernetes/ssl/ca.pem \\
  12. --cluster-signing-key-file=/opt/kubernetes/ssl/ca-key.pem \\
  13. --root-ca-file=/opt/kubernetes/ssl/ca.pem \\
  14. --service-account-private-key-file=/opt/kubernetes/ssl/ca-key.pem \\
  15. --cluster-signing-duration=87600h0m0s"
  16. EOF
—kubeconfig:连接apiserver配置文件 —leader-elect:当该组件启动多个时,自动选举(HA) • —cluster-signing-cert-file/—cluster-signing-key-file:自动为kubelet颁发证书的CA,与apiserver保持一致

4.5.2 生成kubeconfig文件

生成kube-controller-manager证书:
  1. # 切换工作目录
  2. cd ~/TLS/k8s
  3. # 创建证书请求文件
  4. cat > kube-controller-manager-csr.json << EOF
  5. {
  6. "CN": "system:kube-controller-manager",
  7. "hosts": [],
  8. "key": {
  9. "algo": "rsa",
  10. "size": 2048
  11. },
  12. "names": [
  13. {
  14. "C": "CN",
  15. "L": "BeiJing",
  16. "ST": "BeiJing",
  17. "O": "system:masters",
  18. "OU": "System"
  19. }
  20. ]
  21. }
  22. EOF
  23. # 生成证书
  24. cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-controller-manager-csr.json | cfssljson -bare kube-controller-manager

4.5.3 在终端执行以下命令

  1. KUBE_CONFIG="/opt/kubernetes/cfg/kube-controller-manager.kubeconfig"
  2. KUBE_APISERVER="https://192.168.22.88:6443"
  3. kubectl config set-cluster kubernetes \
  4. --certificate-authority=/opt/kubernetes/ssl/ca.pem \
  5. --embed-certs=true \
  6. --server=${KUBE_APISERVER} \
  7. --kubeconfig=${KUBE_CONFIG}
  8. kubectl config set-credentials kube-controller-manager \
  9. --client-certificate=./kube-controller-manager.pem \
  10. --client-key=./kube-controller-manager-key.pem \
  11. --embed-certs=true \
  12. --kubeconfig=${KUBE_CONFIG}
  13. kubectl config set-context default \
  14. --cluster=kubernetes \
  15. --user=kube-controller-manager \
  16. --kubeconfig=${KUBE_CONFIG}
  17. kubectl config use-context default --kubeconfig=${KUBE_CONFIG}

4.5.4 systemd管理controller-manager

  1. cat > /usr/lib/systemd/system/kube-controller-manager.service << EOF
  2. [Unit]
  3. Description=Kubernetes Controller Manager
  4. Documentation=https://github.com/kubernetes/kubernetes
  5. [Service]
  6. EnvironmentFile=/opt/kubernetes/cfg/kube-controller-manager.conf
  7. ExecStart=/opt/kubernetes/bin/kube-controller-manager \$KUBE_CONTROLLER_MANAGER_OPTS
  8. Restart=on-failure
  9. [Install]
  10. WantedBy=multi-user.target
  11. EOF

4.5.5 启动并设置开机启动

  1. systemctl daemon-reload
  2. systemctl start kube-controller-manager
  3. systemctl enable kube-controller-manager

4.6 部署kube-scheduler

4.6.1 创建配置文件

  1. cat > /opt/kubernetes/cfg/kube-scheduler.conf << EOF
  2. KUBE_SCHEDULER_OPTS="--logtostderr=false \\
  3. --v=2 \\
  4. --log-dir=/opt/kubernetes/logs \\
  5. --leader-elect \\
  6. --kubeconfig=/opt/kubernetes/cfg/kube-scheduler.kubeconfig \\
  7. --bind-address=127.0.0.1"
  8. EOF
—kubeconfig:连接apiserver配置文件 • —leader-elect:当该组件启动多个时,自动选举(HA)

4.6.2 生成kubeconfig文件

生成kube-scheduler证书:
  1. # 切换工作目录
  2. cd ~/TLS/k8s
  3. # 创建证书请求文件
  4. cat > kube-scheduler-csr.json << EOF
  5. {
  6. "CN": "system:kube-scheduler",
  7. "hosts": [],
  8. "key": {
  9. "algo": "rsa",
  10. "size": 2048
  11. },
  12. "names": [
  13. {
  14. "C": "CN",
  15. "L": "BeiJing",
  16. "ST": "BeiJing",
  17. "O": "system:masters",
  18. "OU": "System"
  19. }
  20. ]
  21. }
  22. EOF
  23. # 生成证书
  24. cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-scheduler-csr.json | cfssljson -bare kube-scheduler
生成kubeconfig文件
  1. KUBE_CONFIG="/opt/kubernetes/cfg/kube-scheduler.kubeconfig"
  2. KUBE_APISERVER="https://192.168.22.88:6443"
  3. kubectl config set-cluster kubernetes \
  4. --certificate-authority=/opt/kubernetes/ssl/ca.pem \
  5. --embed-certs=true \
  6. --server=${KUBE_APISERVER} \
  7. --kubeconfig=${KUBE_CONFIG}
  8. kubectl config set-credentials kube-scheduler \
  9. --client-certificate=./kube-scheduler.pem \
  10. --client-key=./kube-scheduler-key.pem \
  11. --embed-certs=true \
  12. --kubeconfig=${KUBE_CONFIG}
  13. kubectl config set-context default \
  14. --cluster=kubernetes \
  15. --user=kube-scheduler \
  16. --kubeconfig=${KUBE_CONFIG}
  17. kubectl config use-context default --kubeconfig=${KUBE_CONFIG}

4.6.3 生成kubeconfig文件

  1. cat > /usr/lib/systemd/system/kube-scheduler.service << EOF
  2. [Unit]
  3. Description=Kubernetes Scheduler
  4. Documentation=https://github.com/kubernetes/kubernetes
  5. [Service]
  6. EnvironmentFile=/opt/kubernetes/cfg/kube-scheduler.conf
  7. ExecStart=/opt/kubernetes/bin/kube-scheduler \$KUBE_SCHEDULER_OPTS
  8. Restart=on-failure
  9. [Install]
  10. WantedBy=multi-user.target
  11. EOF

4.6.4 启动并设置开机启动

  1. systemctl daemon-reload
  2. systemctl start kube-scheduler
  3. systemctl enable kube-scheduler

4.6.5 查看集群状态

生成kubectl连接集群的证书:
  1. cat > admin-csr.json <<EOF
  2. {
  3. "CN": "admin",
  4. "hosts": [],
  5. "key": {
  6. "algo": "rsa",
  7. "size": 2048
  8. },
  9. "names": [
  10. {
  11. "C": "CN",
  12. "L": "BeiJing",
  13. "ST": "BeiJing",
  14. "O": "system:masters",
  15. "OU": "System"
  16. }
  17. ]
  18. }
  19. EOF
  20. cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes admin-csr.json | cfssljson -bare admin
生成kubeconfig文件:
  1. mkdir /root/.kube
  2. KUBE_CONFIG="/root/.kube/config"
  3. KUBE_APISERVER="https://192.168.22.88:6443"
  4. kubectl config set-cluster kubernetes \
  5. --certificate-authority=/opt/kubernetes/ssl/ca.pem \
  6. --embed-certs=true \
  7. --server=${KUBE_APISERVER} \
  8. --kubeconfig=${KUBE_CONFIG}
  9. kubectl config set-credentials cluster-admin \
  10. --client-certificate=./admin.pem \
  11. --client-key=./admin-key.pem \
  12. --embed-certs=true \
  13. --kubeconfig=${KUBE_CONFIG}
  14. kubectl config set-context default \
  15. --cluster=kubernetes \
  16. --user=cluster-admin \
  17. --kubeconfig=${KUBE_CONFIG}
  18. kubectl config use-context default --kubeconfig=${KUBE_CONFIG}
通过kubectl工具查看当前集群组件状态:
  1. kubectl get cs
  2. NAME STATUS MESSAGE ERROR
  3. scheduler Healthy ok
  4. controller-manager Healthy ok
  5. etcd-2 Healthy {"health":"true"}
  6. etcd-1 Healthy {"health":"true"}
  7. etcd-0 Healthy {"health":"true"}
  8. #如上输出说明Master节点组件运行正常。

4.6.6 授权kubelet-bootstrap用户允许请求证书

  1. kubectl create clusterrolebinding kubelet-bootstrap \
  2. --clusterrole=system:node-bootstrapper \
  3. --user=kubelet-bootstrap

4.7 部署kubelet

4.7.1 创建工作目录并拷贝二进制文件

  1. mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}
  2. cd kubernetes/server/bin
  3. cp kubelet kube-proxy /opt/kubernetes/bin # 本地拷贝

4.7.2 创建配置文件

  1. cat > /opt/kubernetes/cfg/kubelet.conf << EOF
  2. KUBELET_OPTS="--logtostderr=false \\
  3. --v=2 \\
  4. --log-dir=/opt/kubernetes/logs \\
  5. --hostname-override=k8s-master01 \\
  6. --kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \\
  7. --bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \\
  8. --config=/opt/kubernetes/cfg/kubelet-config.yml \\
  9. --cert-dir=/opt/kubernetes/ssl \\
  10. --container-runtime=remote \\
  11. --runtime-request-timeout=15m \\
  12. --container-runtime-endpoint=unix:///run/containerd/containerd.sock \\
  13. --cgroup-driver=systemd \\
  14. --node-labels=node.kubernetes.io/node='' \\
  15. --feature-gates=IPv6DualStack=true
  16. EOF
—hostname-override:显示名称,集群中唯一 —network-plugin:启用CNI —kubeconfig:空路径,会自动生成,后面用于连接apiserver —bootstrap-kubeconfig:首次启动向apiserver申请证书 —config:配置参数文件 —cert-dir:kubelet证书生成目录 • —pod-infra-container-image:管理Pod网络容器的镜像

4.7.3 配置参数

  1. cat > /opt/kubernetes/cfg/kubelet-config.yml << EOF
  2. kind: KubeletConfiguration
  3. apiVersion: kubelet.config.k8s.io/v1beta1
  4. address: 0.0.0.0
  5. port: 10250
  6. readOnlyPort: 10255
  7. cgroupDriver: cgroupfs
  8. clusterDNS:
  9. - 10.0.0.2
  10. clusterDomain: cluster.local
  11. failSwapOn: false
  12. authentication:
  13. anonymous:
  14. enabled: false
  15. webhook:
  16. cacheTTL: 2m0s
  17. enabled: true
  18. x509:
  19. clientCAFile: /opt/kubernetes/ssl/ca.pem
  20. authorization:
  21. mode: Webhook
  22. webhook:
  23. cacheAuthorizedTTL: 5m0s
  24. cacheUnauthorizedTTL: 30s
  25. evictionHard:
  26. imagefs.available: 15%
  27. memory.available: 100Mi
  28. nodefs.available: 10%
  29. nodefs.inodesFree: 5%
  30. maxOpenFiles: 1000000
  31. maxPods: 110
  32. EOF

4.7.4 生成kubelet初次加入集群引导kubeconfig文件

  1. KUBE_CONFIG="/opt/kubernetes/cfg/bootstrap.kubeconfig"
  2. KUBE_APISERVER="https://192.168.22.88:6443" # apiserver IP:PORT
  3. TOKEN="c47ffb939f5ca36231d9e3121a252940" # 与token.csv里保持一致
  4. # 生成 kubelet bootstrap kubeconfig 配置文件
  5. kubectl config set-cluster kubernetes \
  6. --certificate-authority=/opt/kubernetes/ssl/ca.pem \
  7. --embed-certs=true \
  8. --server=${KUBE_APISERVER} \
  9. --kubeconfig=${KUBE_CONFIG}
  10. kubectl config set-credentials "kubelet-bootstrap" \
  11. --token=${TOKEN} \
  12. --kubeconfig=${KUBE_CONFIG}
  13. kubectl config set-context default \
  14. --cluster=kubernetes \
  15. --user="kubelet-bootstrap" \
  16. --kubeconfig=${KUBE_CONFIG}
  17. kubectl config use-context default --kubeconfig=${KUBE_CONFIG}

4.7.5 systemd管理kubelet

  1. cat > /usr/lib/systemd/system/kubelet.service << EOF
  2. [Unit]
  3. Description=Kubernetes Kubelet
  4. After=docker.service
  5. [Service]
  6. EnvironmentFile=/opt/kubernetes/cfg/kubelet.conf
  7. ExecStart=/opt/kubernetes/bin/kubelet \$KUBELET_OPTS
  8. Restart=on-failure
  9. LimitNOFILE=65536
  10. [Install]
  11. WantedBy=multi-user.target
  12. EOF

4.7.6 启动并设置开机启动

  1. systemctl daemon-reload
  2. systemctl start kubelet
  3. systemctl enable kubelet

4.7.7 批准kubelet证书申请并加入集群

  1. # 查看kubelet证书请求
  2. kubectl get csr
  3. NAME AGE SIGNERNAME REQUESTOR CONDITION
  4. node-csr-uCEGPOIiDdlLODKts8J658HrFq9CZ--K6M4G7bjhk8A 6m3s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Pending
  5. # 批准申请
  6. kubectl certificate approve node-csr-uCEGPOIiDdlLODKts8J658HrFq9CZ--K6M4G7bjhk8A
  7. # 查看节点
  8. kubectl get node
  9. NAME STATUS ROLES AGE VERSION
  10. k8s-master1 NotReady <none> 7s v1.25.2
  11. #由于网络插件还没有部署,节点会没有准备就绪 NotReady

4.8 部署kube-proxy

4.8.1 创建配置文件

  1. cat > /opt/kubernetes/cfg/kube-proxy.conf << EOF
  2. KUBE_PROXY_OPTS="--logtostderr=false \\
  3. --v=2 \\
  4. --log-dir=/opt/kubernetes/logs \\
  5. --config=/opt/kubernetes/cfg/kube-proxy-config.yml"
  6. EOF

4.8.2 配置参数文件

  1. cat > /opt/kubernetes/cfg/kube-proxy-config.yml << EOF
  2. kind: KubeProxyConfiguration
  3. apiVersion: kubeproxy.config.k8s.io/v1alpha1
  4. bindAddress: 0.0.0.0
  5. metricsBindAddress: 0.0.0.0:10249
  6. clientConnection:
  7. kubeconfig: /opt/kubernetes/cfg/kube-proxy.kubeconfig
  8. hostnameOverride: k8s-master01
  9. clusterCIDR: 10.244.0.0/16
  10. EOF

4.8.3 生成kube-proxy.kubeconfig文件

  1. # 切换工作目录
  2. cd ~/TLS/k8s
  3. # 创建证书请求文件
  4. cat > kube-proxy-csr.json << EOF
  5. {
  6. "CN": "system:kube-proxy",
  7. "hosts": [],
  8. "key": {
  9. "algo": "rsa",
  10. "size": 2048
  11. },
  12. "names": [
  13. {
  14. "C": "CN",
  15. "L": "BeiJing",
  16. "ST": "BeiJing",
  17. "O": "k8s",
  18. "OU": "System"
  19. }
  20. ]
  21. }
  22. EOF
  23. # 生成证书
  24. cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy
  25. 生成kubeconfig文件:
  26. KUBE_CONFIG="/opt/kubernetes/cfg/kube-proxy.kubeconfig"
  27. KUBE_APISERVER="https://192.168.2.88:6443"
  28. kubectl config set-cluster kubernetes \
  29. --certificate-authority=/opt/kubernetes/ssl/ca.pem \
  30. --embed-certs=true \
  31. --server=${KUBE_APISERVER} \
  32. --kubeconfig=${KUBE_CONFIG}
  33. kubectl config set-credentials kube-proxy \
  34. --client-certificate=./kube-proxy.pem \
  35. --client-key=./kube-proxy-key.pem \
  36. --embed-certs=true \
  37. --kubeconfig=${KUBE_CONFIG}
  38. kubectl config set-context default \
  39. --cluster=kubernetes \
  40. --user=kube-proxy \
  41. --kubeconfig=${KUBE_CONFIG}
  42. kubectl config use-context default --kubeconfig=${KUBE_CONFIG}

4.8.4 systemd管理kube-proxy

  1. cat > /usr/lib/systemd/system/kube-proxy.service << EOF
  2. [Unit]
  3. Description=Kubernetes Proxy
  4. After=network.target
  5. [Service]
  6. EnvironmentFile=/opt/kubernetes/cfg/kube-proxy.conf
  7. ExecStart=/opt/kubernetes/bin/kube-proxy \$KUBE_PROXY_OPTS
  8. Restart=on-failure
  9. LimitNOFILE=65536
  10. [Install]
  11. WantedBy=multi-user.target
  12. EOF

4.8.5 启动并设置开机启动

  1. systemctl daemon-reload
  2. systemctl start kube-proxy
  3. systemctl enable kube-proxy

4.8.6 部署网络组件

Calico是一个纯三层的数据中心网络方案,是目前Kubernetes主流的网络方案。 部署Calico:
  1. kubectl apply -f calico.yaml
  2. kubectl get pods -n kube-system

故障排查

①当calico镜像因为网络原因被墙下载不了的情况,课程包中也准备了离线镜像,使用Containerd的ctr命令导入本地(其中一定要加上命名空间-n=k8s.io)

  1. ctr -n=k8s.io images import pause.tar

②上述步骤中改错任意IP或host地址都会导致集群组件抛异常,可通过journalctl -u kube-scheduler(任意组件名排查故障)

  1. kubectl get node
  2. NAME STATUS ROLES AGE VERSION
  3. k8s-master Ready <none> 37m v1.25.2
  4. #部署成功后节点会准备就绪

4.8.7 授权apiserver访问kubelet

  1. cat > apiserver-to-kubelet-rbac.yaml << EOF
  2. apiVersion: rbac.authorization.k8s.io/v1
  3. kind: ClusterRole
  4. metadata:
  5. annotations:
  6. rbac.authorization.kubernetes.io/autoupdate: "true"
  7. labels:
  8. kubernetes.io/bootstrapping: rbac-defaults
  9. name: system:kube-apiserver-to-kubelet
  10. rules:
  11. - apiGroups:
  12. - ""
  13. resources:
  14. - nodes/proxy
  15. - nodes/stats
  16. - nodes/log
  17. - nodes/spec
  18. - nodes/metrics
  19. - pods/log
  20. verbs:
  21. - "*"
  22. ---
  23. apiVersion: rbac.authorization.k8s.io/v1
  24. kind: ClusterRoleBinding
  25. metadata:
  26. name: system:kube-apiserver
  27. namespace: ""
  28. roleRef:
  29. apiGroup: rbac.authorization.k8s.io
  30. kind: ClusterRole
  31. name: system:kube-apiserver-to-kubelet
  32. subjects:
  33. - apiGroup: rbac.authorization.k8s.io
  34. kind: User
  35. name: kubernetes
  36. EOF
  37. kubectl apply -f apiserver-to-kubelet-rbac.yaml

5. 部署Node节点

5.1 拷贝已部署好的Node相关文件到新节点

在k8s-master01节点将Worker Node涉及文件拷贝到新节点192.168.22.90
  1. scp -r /opt/kubernetes root@192.168.22.90:/opt/
  2. scp -r /usr/lib/systemd/system/{kubelet,kube-proxy}.service root@192.168.22.90:/usr/lib/systemd/system

5.2 删除kubelet证书和kubeconfig文件

  1. rm -f /opt/kubernetes/cfg/kubelet.kubeconfig
  2. rm -f /opt/kubernetes/ssl/kubelet*
  3. #注:这几个文件是证书申请审批后自动生成的,每个Node不同,必须删除

5.3 修改主机名

  1. vim /opt/kubernetes/cfg/kubelet.conf
  2. --hostname-override=k8s-node01
  3. vim /opt/kubernetes/cfg/kube-proxy-config.yml
  4. hostnameOverride: k8s-node01

5.4 启动并设置开机启动

  1. systemctl daemon-reload
  2. systemctl start kubelet kube-proxy
  3. systemctl enable kubelet kube-proxy

5.5 在Master上批准新Node kubelet证书申请

  1. # 查看证书请求
  2. kubectl get csr
  3. NAME AGE SIGNERNAME REQUESTOR CONDITION
  4. node-csr-4zTjsaVSrhuyhIGqsefxzVoZDCNKei-aE2jyTP81Uro 89s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Pending
  5. # 授权请求
  6. kubectl certificate approve node-csr-4zTjsaVSrhuyhIGqsefxzVoZDCNKei-aE2jyTP81Uro

5.6 查看Node状态

  1. kubectl get node
  2. NAME STATUS ROLES AGE VERSION
  3. k8s-master01 Ready <none> 47m v1.25.2
  4. k8s-node01 Ready <none> 6m49s v1.25.2

后续新加的node节点同上。记得修改主机名!

6. 部署Dashboard和CoreDNS

6.1 部署Dashboard

  1. kubectl apply -f kubernetes-dashboard.yaml
  2. # 查看部署
  3. kubectl get pods,svc -n kubernetes-dashboard
  4. #访问地址:https://NodeIP:30001
创建service account并绑定默认cluster-admin管理员集群角色:
  1. kubectl create serviceaccount dashboard-admin -n kube-system
  2. kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
  3. kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')
使用输出的token登录Dashboard。

实验课题:二进制部署Kubernetes - 图4

6.2 部署CoreDNS

CoreDNS用于集群内部Service名称解析。
  1. kubectl apply -f coredns.yaml
  2. kubectl get pods -n kube-system
  3. NAME READY STATUS RESTARTS AGE
  4. coredns-5ffbfd976d-j6shb 1/1 Running 0 32s

6.2.1 DNS解析测试:

  1. kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
  2. If you don't see a command prompt, try pressing enter.
  3. / # nslookup kubernetes
  4. Server: 10.0.0.2
  5. Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local
  6. Name: kubernetes
  7. Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local

以上。一个单Master集群就搭建完成了。足以满足后续的学习实验

7. 拓展篇:扩容多Master节点(高可用)

Kubernetes作为容器集群系统,通过健康检查+重启策略实现了Pod故障自我修复能力,通过调度算法实现将Pod分布式部署,并保持预期副本数,根据Node失效状态自动在其他Node拉起Pod,实现了应用层的高可用性。 针对Kubernetes集群,高可用性还应包含以下两个层面的考虑:Etcd数据库的高可用性和Kubernetes Master组件的高可用性。 而Etcd我们已经采用3个节点组建集群实现高可用,本节将对Master节点高可用进行说明和实施。 Master节点扮演着总控中心的角色,通过不断与工作节点上的Kubeletkube-proxy进行通信来维护整个集群的健康工作状态。如果Master节点故障,将无法使用kubectl工具或者API做任何集群管理。 Master节点主要有三个服务kube-apiserver、kube-controller-manager和kube-scheduler,其中kube-controller-manager和kube-scheduler组件自身通过选择机制已经实现了高可用,所以Master高可用主要针对kube-apiserver组件,而该组件是以HTTP API提供服务,因此对他高可用与Web服务器类似,增加负载均衡器对其负载均衡即可,并且可水平扩容。

7.1 部署k8s-master02

k8s-master02 与已部署的k8s-master01所有操作一致。所以我们只需将Master1所有K8s文件拷贝过来,再修改下服务器IP和主机名启动即可。

7.1.1 拷贝文件

  1. scp -r /opt/kubernetes root@192.168.22.89:/opt
  2. scp -r /opt/etcd/ssl root@192.168.22.89:/opt/etcd
  3. scp /usr/lib/systemd/system/kube* root@192.168.22.89:/usr/lib/systemd/system
  4. scp /usr/bin/kubectl root@192.168.22.89:/usr/bin
  5. scp -r ~/.kube root@192.168.22.89:~

7.1.2 删除证书文件

  1. rm -f /opt/kubernetes/cfg/kubelet.kubeconfig
  2. rm -f /opt/kubernetes/ssl/kubelet*
  3. #删除kubelet证书和kubeconfig文件

7.1.3 修改apiserver、kubelet和kube-proxy配置文件为本地IP

  1. vi /opt/kubernetes/cfg/kube-apiserver.conf
  2. ...
  3. --bind-address=192.168.22.89 \
  4. --advertise-address=192.168.22.89 \
  5. ...
  6. vi /opt/kubernetes/cfg/kube-controller-manager.kubeconfig
  7. server: https://192.168.22.89:6443
  8. vi /opt/kubernetes/cfg/kube-scheduler.kubeconfig
  9. server: https://192.168.22.89:6443
  10. vi /opt/kubernetes/cfg/kubelet.conf
  11. --hostname-override=k8s-master02
  12. vi /opt/kubernetes/cfg/kube-proxy-config.yml
  13. hostnameOverride: k8s-master2
  14. vi ~/.kube/config
  15. ...
  16. server: https://192.168.22.89:6443

7.1.4 启动设置开机启动

  1. systemctl daemon-reload
  2. systemctl start kube-apiserver kube-controller-manager kube-scheduler kubelet kube-proxy
  3. systemctl enable kube-apiserver kube-controller-manager kube-scheduler kubelet kube-proxy

7.1.5 查看集群状态

  1. kubectl get cs
  2. NAME STATUS MESSAGE ERROR
  3. scheduler Healthy ok
  4. controller-manager Healthy ok
  5. etcd-1 Healthy {"health":"true"}
  6. etcd-2 Healthy {"health":"true"}
  7. etcd-0 Healthy {"health":"true"}

7.1.6 批准kubelet证书申请

  1. # 查看证书请求
  2. kubectl get csr
  3. NAME AGE SIGNERNAME REQUESTOR CONDITION
  4. node-csr-JYNknakEa_YpHz797oKaN-ZTk43nD51Zc9CJkBLcASU 85m kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Pending
  5. # 授权请求
  6. kubectl certificate approve node-csr-JYNknakEa_YpHz797oKaN-ZTk43nD51Zc9CJkBLcASU
  7. # 查看Node
  8. kubectl get node
  9. NAME STATUS ROLES AGE VERSION
  10. k8s-master01 Ready <none> 34h v1.25.2
  11. k8s-master22 Ready <none> 2m v1.25.2
  12. k8s-node01 Ready <none> 33h v1.25.2

7.2 高可用负载均衡器(Nginx+Keepalived,SLB等等)

实验课题:二进制部署Kubernetes - 图5

这块就不再多叙述,主要思路就是将kube-apiserver做高可用。通过loadbalance访问

配置完LB VIP(192.168.22.91)以后。在所有节点执行

  1. sed -i 's#192.168.22.88:6443#192.168.22.91:6443#' /opt/kubernetes/cfg/*
  2. systemctl restart kubelet kube-proxy
  3. kubectl get node

实验总结:

基于上述实验,能够对k8s各项组件配置深入了解。