获取更多R语言知识,请关注公众号:医学和生信笔记
医学和生信笔记 公众号主要分享:1.医学小知识、肛肠科小知识;2.R语言和Python相关的数据分析、可视化、机器学习等;3.生物信息学学习资料和自己的学习笔记!
这个包很方便下载TCGA的各种数据,而且是最新的,唯一的障碍是网络问题。记录以下这个包的使用方法,以下代码摘录自网络。
# if (!requireNamespace("BiocManager", quietly=TRUE))# install.packages("BiocManager")# BiocManager::install("TCGAbiolinks")library(TCGAbiolinks)library(dplyr)library(DT)library(SummarizedExperiment)getGDCprojects()#下载临床数据clinical <- GDCquery_clinic(project = "TCGA-COAD", type = "clinical")write.csv(clinical,file = "TCGA-COAD-clinical.csv")save(clinical,file = "TCGA-COAD-clinical.RData")#下载rna-seq的counts数据query <- GDCquery(project = "TCGA-COAD",data.category = "Transcriptome Profiling",data.type = "Gene Expression Quantification",workflow.type = "HTSeq - Counts")#save(query, file = "query_mrnaCounts.RData")GDCdownload(query, method = "api", files.per.chunk = 50)expdat <- GDCprepare(query = query)count_matrix <- assay(expdat)write.csv(count_matrix,file = "TCGA-COAD-Counts.csv")save(count_matrix,file = "expdat_mrna.RData")#下载miRNA数据query <- GDCquery(project = "TCGA-COAD",data.category = "Transcriptome Profiling",data.type = "miRNA Expression Quantification",workflow.type = "BCGSC miRNA Profiling")GDCdownload(query, method = "api", files.per.chunk = 50)expdat_mirna <- GDCprepare(query = query)write.csv(expdat_mirna,file = "TCGA-COAD-miRNA.csv")save(expdat_mirna,file = "expdat_mirna.RData")#下载Copy Number Variation数据query <- GDCquery(project = "TCGA-COAD",data.category = "Copy Number Variation",data.type = "Copy Number Segment")GDCdownload(query, method = "api", files.per.chunk = 50)expdat <- GDCprepare(query = query)save(expdat,file = "TCGA-COAD-Copy-Number-Variation.RData")write.csv(expdat,file = "TCGA-COAD-Copy-Number-Variation.csv")#下载Copy Number Variation GISTIC2数据query <- GDCquery(project = "TCGA-COAD",data.category = "Copy Number Variation",data.type = "Gene Level Copy Number Scores",access="open")GDCdownload(query, method = "api")GISTIC_cnv <- GDCprepare(query)save(GISTIC_cnv,file = "TCGA-COAD-GISTIC-cnv.RData")#下载甲基化数据,非常大,50多Gquery.met <- GDCquery(project = "TCGA-COAD",#legacy = TRUE,data.category = "DNA Methylation")GDCdownload(query.met, method = "api", files.per.chunk = 300)expdat <- GDCprepare(query = query)count_matrix=assay(expdat)write.csv(count_matrix,file = "TCGA-COAD-methylation.csv")# 下载SNV数据acc.maf <- GDCquery_Maf("COAD", pipelines = "muse")save(acc.maf,file = "TCGA-COAD-acc.maf.RData")
获取更多R语言知识,请关注公众号:医学和生信笔记
医学和生信笔记 公众号主要分享:1.医学小知识、肛肠科小知识;2.R语言和Python相关的数据分析、可视化、机器学习等;3.生物信息学学习资料和自己的学习笔记!
