DataFrame.from_records
DataFrame.from_records(data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None)
从结构化的ndarray、元组或字典序列创建一个DataFrame对象。
Parameters
| data | 结构化的ndarray、元组或字典序列的输入数据 |
|---|---|
| index | 用作索引的数组字段,或者使用一组特定的输入标签 |
| exclude | 要排除的列或字段 |
| columns | 要使用的列名 |
| coerce_float | 尝试将非字符串、非数字对象(如Decimal)的值转换为浮点数 |
| nrows | 如果数据是迭代器,读取的行数 |
Example:data
query_set = Entry.objects.all()df = pd.DataFrame.from_records(query_set.values())
Example:data
import pandas as pddata = [{"name": "google", "age": 18}, {"name": "baidu", "age": 20}]pd.DataFrame.from_records(data)---------------------------------------------------------name age0 google 181 baidu 20
Example:index
import pandas as pddata = [{"name": "google", "age": 18}, {"name": "baidu", "age": 20}]pd.DataFrame.from_records(data, index=["first", "second"])---------------------------------------------------------name agefirst google 18second baidu 20
Example:exclude
import pandas as pddata = [{"name": "google", "age": 18}, {"name": "baidu", "age": 20}]pd.DataFrame.from_records(data, exclude=["age"])---------------------------------------------------name0 google1 baidu
Example:columns
import pandas as pddata = [("google", 18), ("baidu", 20), ("apple", 30)]pd.DataFrame.from_records(data, columns=["site", "age"])------------------------------------------------------site age0 google 181 baidu 202 apple 30
