DataFrame.dropna
DataFrame.dropna(axis=0, how=’any’, thresh=None, subset=None, inplace=False)
于删除缺失数据。
Parameters
| axis | 0或index:删除包含缺失的行;1或columns:删除包含缺失值的列 |
|---|---|
| how | any:如果存在NA值,删除该行或列;all:如果所有值都是NA,删除该行或列 |
| thresh | 需要的非NA值个数 |
| subset | 删除行,需要包括的列的列表;删除列,需要包括的行的列表 |
| inplace | False:返回副本;True:就地执行操作并返回None |
Example
import pandas as pddf = pd.DataFrame({'site':['google', 'baidu', 'wiki'],'age':[18, 39, 22],'price': [None, 2.0, 3.0],'color': [None, 'black', None]})df.dropna()-------------------------------------site age price color1 baidu 39 2.0 black
Example
import pandas as pddf = pd.DataFrame({'site':['google', 'baidu', 'wiki'],'age':[18, 39, 22],'price': [None, 2.0, 3.0],'color': [None, 'black', None]})df.dropna(axis='columns')---------------------------------------site age0 google 181 baidu 392 wiki 22
Example
import pandas as pddf = pd.DataFrame({'site':[None, 'baidu', 'wiki'],'age':[None, 39, 22],'price': [None, 2.0, 3.0],'color': [None, 'black', None]})df.dropna(how='all')---------------------------------------site age price color1 baidu 39.0 2.0 black2 wiki 22.0 3.0 None
Example
import pandas as pddf = pd.DataFrame({'site':['google', 'baidu', 'wiki'],'age':[18, 39, 22],'price': [None, 2.0, 3.0],'color': [None, 'black', None]})df.dropna(thresh=3)-------------------------------------site age price color1 baidu 39 2.0 black2 wiki 22 3.0 None
Example
import pandas as pddf = pd.DataFrame({'site':['google', 'baidu', 'wiki'],'age':[18, 39, 22],'price': [None, 2.0, 3.0],'color': [None, 'black', None]})df.dropna(subset=['age', 'price'])--------------------------------------------site age price color1 baidu 39 2.0 black2 wiki 22 3.0 None
