pandas.concat
pandas.concat(objs, axis=0, join=’outer’, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=True)
沿着特定的轴用可选的设置逻辑合并DataFrame对象。
Parameters
| objs | Series或DataFrame对象的序列或映射 |
|---|---|
| axis | default _0,0或_index;1或columns |
| join | ‘inner‘或’outer‘ |
| ignore_index | True:返回的DataFrame索引将被重置为0,1,2…n-1 |
| keys | |
| levels | |
| names | |
| verify_integrity | False:检查索引是否有重复 |
| sort | 当join为’outer‘时,对非连接轴排序;当join为’inner‘时没有影响 |
| copy | False:不复制数据 |
Example
import pandas as pddf1 = pd.DataFrame({'age': [18, 19], 'sex': ['man', 'woman']})df2 = pd.DataFrame({'age': [28, 29], 'sex': ['man', 'man']})pd.concat([df1, df2])--------------------------------------------------age sex0 18 man1 19 woman0 28 man1 29 man
Example
import pandas as pddf1 = pd.DataFrame({'age': [18, 19], 'sex': ['man', 'woman']})df2 = pd.DataFrame({'age': [28, 29], 'sex': ['man', 'man']})pd.concat([df1, df2], ignore_index=True)----------------------------------------------------age sex0 18 man1 19 woman2 28 man3 29 man
Example
import pandas as pddf1 = pd.DataFrame({'age': [18, 19], 'sex': ['man', 'woman']})df2 = pd.DataFrame({'age': [28, 29], 'sex': ['man', 'man']})pd.concat([df1, df2], keys=['df1','df2'])--------------------------------------age sexdf1 0 18 man1 19 womandf2 0 28 man1 29 man
Example
import pandas as pddf1 = pd.DataFrame({'age': [18, 19], 'sex': ['man', 'woman']})df2 = pd.DataFrame({'age': [28, 29], 'sex': ['man', 'man']})pd.concat([df1, df2], keys=['df1','df2'], names=['series_name', 'row_id'])---------------------------------------age sexseries_name row_iddf1 0 18 man1 19 womandf2 0 28 man1 29 man
