1.什么是Hive?
Hive:由Facebook开源用于解决海量结构化日志的数据统计。
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。
本质是:将HQL转化成MapReduce程序
1)Hive处理的数据存储在HDFS
2)Hive分析数据底层的实现是MapReduce
3)执行程序运行在Yarn上
2.优缺点
2.1优点
- 操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。
- 避免了去写MapReduce,减少开发人员的学习成本。
- Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合。
- Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。
Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
2.2 缺点
1.Hive的HQL表达能力有限
(1)迭代式算法无法表达
(2)数据挖掘方面不擅长,由于MapReduce数据处理流程的限制,效率更高的算法却无法实现。
2.Hive的效率比较低
(1)Hive自动生成的MapReduce作业,通常情况下不够智能化
(2)Hive调优比较困难,粒度较粗3.Hive和数据库对比
Hive 和数据库除了拥有类似的查询语言,再无类似之处
查询语言:由于SQL被广泛的应用在数据仓库中,因此,为方便开发者快速使用MR开发开发而专门设计的类SQL的查询语言HQL
- 数据更新:由于Hive依赖HDFS 因此,Hive中不建议对数据的改写而数据库可以进行CURD
- 执行:Hive中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的。而数据库通常有自己的执行引擎。
- 执行延迟:Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapReduce框架。由于MapReduce 本身具有较高的延迟,因此在利用MapReduce 执行Hive查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive的并行计算显然能体现出优势。
- 可扩展性:由于Hive是建立在Hadoop之上的,因此Hive的可扩展性是和Hadoop的可扩展性是一致的(2009年的规模在4k 台节点左右)。而数据库由于 ACID 语义的严格限制,扩展行非常有限。目前最先进的并行数据库 Oracle 在理论上的扩展能力也只有100台左右。
- 数据规模:由于Hive建立在集群上并可以利用MapReduce进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。
4.架构原理
1.用户接口:Client CLI(command-line interface)、JDBC/ODBC(jdbc访问hive)、WEBUI(浏览器访问hive)
2.元数据:Metastore 元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore
3.Hadoop使用HDFS进行存储,使用MapReduce进行计算。
4.驱动器:Driver
- 解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
- 编译器(Physical Plan):将AST编译生成逻辑执行计划。
- 优化器(Query Optimizer):对逻辑执行计划进行优化。
执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。
5.hive元数据配置到mysql
hive -hiveconf hive.root.logger=debug,console
hive-site.xml ```xml <?xml version=”1.0”?> <?xml-stylesheet type=”text/xsl” href=”configuration.xsl”?>javax.jdo.option.ConnectionURL jdbc:mysql://hadoop101:3306/metastore?createDatabaseIfNotExist=true;useSSL=false JDBC connect string for a JDBC metastore javax.jdo.option.ConnectionDriverName com.mysql.jdbc.Driver Driver class name for a JDBC metastore javax.jdo.option.ConnectionUserName root username to use against metastore database javax.jdo.option.ConnectionPassword root password to use against metastore database
6.hive数据类型
6.1基本数据类型
Hive数据类型 | Java数据类型 | 长度 | 例子 |
---|---|---|---|
TINYINT | byte | 1byte有符号整数 | 20 |
SMALINT | short | 2byte有符号整数 | 20 |
INT | int | 4byte有符号整数 | 20 |
BIGINT | long | 8byte有符号整数 | 20 |
BOOLEAN | boolean | 布尔类型,true或者false | TRUE FALSE |
FLOAT | float | 单精度浮点数 | 3.14159 |
DOUBLE | double | 双精度浮点数 | 3.14159 |
STRING | string | 字符系列。可以指定字符集。可以使用单引号或者双引号。 | ‘now is the time’ “for all good men” |
TIMESTAMP | 时间类型 | ||
BINARY | 字节数组 |
6.2集合数据类型
数据类型 | 描述 | 语法示例 |
---|---|---|
STRUCT | 和c语言中的struct类似,都可以通过“点”符号访问元素内容。例如,如果某个列的数据类型是STRUCT{first STRING, last STRING},那么第1个元素可以通过字段.first来引用。 | struct() 例如struct |
MAP | MAP是一组键-值对元组集合,使用数组表示法可以访问数据。例如,如果某个列的数据类型是MAP,其中键->值对是’first’->’John’和’last’->’Doe’,那么可以通过字段名[‘last’]获取最后一个元素 | map() 例如map |
ARRAY | 数组是一组具有相同类型和名称的变量的集合。这些变量称为数组的元素,每个数组元素都有一个编号,编号从零开始。例如,数组值为[‘John’, ‘Doe’],那么第2个元素可以通过数组名[1]进行引用。 | Array() 例如array |
6.3基本类型转换
1.隐式类型转换规则如下
(1)任何整数类型都可以隐式地转换为一个范围更广的类型,如TINYINT可以转换成INT,INT可以转换成BIGINT。
(2)所有整数类型、FLOAT和STRING类型都可以隐式地转换成DOUBLE。
(3)TINYINT、SMALLINT、INT都可以转换为FLOAT。
(4)BOOLEAN类型不可以转换为任何其它的类型。
2.可以使用CAST操作显示进行数据类型转换
例如CAST(‘1’ AS INT)将把字符串’1’ 转换成整数1;如果强制类型转换失败,如执行CAST(‘X’ AS INT),表达式返回空值 NULL。
总结:
Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。