1.什么是Hive?

Hive:由Facebook开源用于解决海量结构化日志的数据统计。
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。
本质是:将HQL转化成MapReduce程序
image.png
1)Hive处理的数据存储在HDFS
2)Hive分析数据底层的实现是MapReduce
3)执行程序运行在Yarn上

2.优缺点

2.1优点

  1. 操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。
  2. 避免了去写MapReduce,减少开发人员的学习成本。
  3. Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合。
  4. Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。
  5. Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。

    2.2 缺点

    1.Hive的HQL表达能力有限
    (1)迭代式算法无法表达
    (2)数据挖掘方面不擅长,由于MapReduce数据处理流程的限制,效率更高的算法却无法实现。
    2.Hive的效率比较低
    (1)Hive自动生成的MapReduce作业,通常情况下不够智能化
    (2)Hive调优比较困难,粒度较粗

    3.Hive和数据库对比

    Hive 和数据库除了拥有类似的查询语言,再无类似之处

  6. 查询语言:由于SQL被广泛的应用在数据仓库中,因此,为方便开发者快速使用MR开发开发而专门设计的类SQL的查询语言HQL

  7. 数据更新:由于Hive依赖HDFS 因此,Hive中不建议对数据的改写而数据库可以进行CURD
  8. 执行:Hive中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的。而数据库通常有自己的执行引擎。
  9. 执行延迟:Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapReduce框架。由于MapReduce 本身具有较高的延迟,因此在利用MapReduce 执行Hive查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive的并行计算显然能体现出优势。
  10. 可扩展性:由于Hive是建立在Hadoop之上的,因此Hive的可扩展性是和Hadoop的可扩展性是一致的(2009年的规模在4k 台节点左右)。而数据库由于 ACID 语义的严格限制,扩展行非常有限。目前最先进的并行数据库 Oracle 在理论上的扩展能力也只有100台左右。
  11. 数据规模:由于Hive建立在集群上并可以利用MapReduce进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。

    4.架构原理

image.png
1.用户接口:Client CLI(command-line interface)、JDBC/ODBC(jdbc访问hive)、WEBUI(浏览器访问hive)
2.元数据:Metastore 元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore
3.Hadoop使用HDFS进行存储,使用MapReduce进行计算。
4.驱动器:Driver

  1. 解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
  2. 编译器(Physical Plan):将AST编译生成逻辑执行计划。
  3. 优化器(Query Optimizer):对逻辑执行计划进行优化。
  4. 执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。

    5.hive元数据配置到mysql

    hive -hiveconf hive.root.logger=debug,console
    hive-site.xml ```xml <?xml version=”1.0”?> <?xml-stylesheet type=”text/xsl” href=”configuration.xsl”?>

    javax.jdo.option.ConnectionURL jdbc:mysql://hadoop101:3306/metastore?createDatabaseIfNotExist=true;useSSL=false JDBC connect string for a JDBC metastore javax.jdo.option.ConnectionDriverName com.mysql.jdbc.Driver Driver class name for a JDBC metastore javax.jdo.option.ConnectionUserName root username to use against metastore database javax.jdo.option.ConnectionPassword root password to use against metastore database

```

6.hive数据类型

6.1基本数据类型

Hive数据类型 Java数据类型 长度 例子
TINYINT byte 1byte有符号整数 20
SMALINT short 2byte有符号整数 20
INT int 4byte有符号整数 20
BIGINT long 8byte有符号整数 20
BOOLEAN boolean 布尔类型,true或者false TRUE FALSE
FLOAT float 单精度浮点数 3.14159
DOUBLE double 双精度浮点数 3.14159
STRING string 字符系列。可以指定字符集。可以使用单引号或者双引号。 ‘now is the time’ “for all good men”
TIMESTAMP 时间类型
BINARY 字节数组

6.2集合数据类型

数据类型 描述 语法示例
STRUCT 和c语言中的struct类似,都可以通过“点”符号访问元素内容。例如,如果某个列的数据类型是STRUCT{first STRING, last STRING},那么第1个元素可以通过字段.first来引用。 struct()
例如struct
MAP MAP是一组键-值对元组集合,使用数组表示法可以访问数据。例如,如果某个列的数据类型是MAP,其中键->值对是’first’->’John’和’last’->’Doe’,那么可以通过字段名[‘last’]获取最后一个元素 map()
例如map
ARRAY 数组是一组具有相同类型和名称的变量的集合。这些变量称为数组的元素,每个数组元素都有一个编号,编号从零开始。例如,数组值为[‘John’, ‘Doe’],那么第2个元素可以通过数组名[1]进行引用。 Array()
例如array

6.3基本类型转换

1.隐式类型转换规则如下
(1)任何整数类型都可以隐式地转换为一个范围更广的类型,如TINYINT可以转换成INT,INT可以转换成BIGINT。
(2)所有整数类型、FLOAT和STRING类型都可以隐式地转换成DOUBLE。
(3)TINYINT、SMALLINT、INT都可以转换为FLOAT。
(4)BOOLEAN类型不可以转换为任何其它的类型。
2.可以使用CAST操作显示进行数据类型转换
例如CAST(‘1’ AS INT)将把字符串’1’ 转换成整数1;如果强制类型转换失败,如执行CAST(‘X’ AS INT),表达式返回空值 NULL。

总结:

Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。