1. Introduction
| Conferences: | IEEE Transactions on Visualization and Computer Graphics ( Early Access ) |
|---|---|
| Author: | Chaoli Wang, Jun Han |
| Year: | 2022 |
| ISBNs, DOls, PMIDs, or arXiv IDs: | 10.1109/TVCG.2022.3167896 |
| Cite: | C. Wang and J. Han, “DL4SciVis: A State-of-the-Art Survey on Deep Learning for Scientific Visualization,” in IEEE Transactions on Visualization and Computer Graphics, doi: 10.1109/TVCG.2022.3167896. |
| Reportor: | 孙百乐 |
| Attachment: |
2. Figures
3. Summary
这是一篇调研在科学可视化中应用深度学习的工作的Survey,选取了来自可视化和图形学领域的六个期刊(IEEE TVCG, CGF, IEEE CG&A, C&G, JoV, VI),三个会议(VIS, EuroVis, PacificVis)的59篇paper,从Domain settings、Research tasks、Learning type、Network architecture、Loss function、Evaluation metric六个维度分析这些文章,并提出了开放性的问题和挑战。
4. Main Points
- 科学可视化与CV和CG领域相似,很多问题可以借鉴
- Deeplearning + SciVis 可以有很多玩法,详情请见research tasks
