准备

1、在/home路径下,新建words.txt文档,文档内容如下:

  1. hello tom
  2. hello jerry
  3. hello kitty
  4. hello world
  5. hello tom

2、将words.txt上传到hdfs上: hdfs dfs -put words.txt /tangwx

编码

pom.xml


创建普通maven项目,引入依赖:

<dependencies>
  <!-- 内部依赖了hadoop-common和hadoop-hdfs-->
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-client</artifactId>
      <version>2.6.0</version>
    </dependency>
</dependencies>

Mapper

mapper代码:

package com.twx.bigdata;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * @author tangwx@soyuan.com.cn
 * @date 2020/3/9 11:45
 */
public class WordCountMapper extends Mapper<LongWritable, Text,Text,IntWritable> {

    Text k = new Text();
    IntWritable v = new IntWritable(1);

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        // 1 获取一行
        String line = value.toString();

        // 2 切割
        String[] words = line.split(" ");

        // 3 输出
        for (String word : words) {
            k.set(word);
            context.write(k, v);
        }
    }
}

reducer

package com.twx.bigdata;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * @author tangwx@soyuan.com.cn
 * @date 2020/3/9 11:47
 */
public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> {
    IntWritable res = new IntWritable();
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

        int sum=0;
        for (IntWritable value : values) {
            sum+=value.get();
        }
        res.set(sum);

        context.write(key,res);
    }
}

job

package com.twx.bigdata;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * Hello world!
 *
 */
public class WordCountDriver
{
    public static void main( String[] args ) throws Exception
    {
        // 1 获取配置信息以及封装任务
        Configuration configuration = new Configuration();
//        configuration.set("dfs.client.use.datanode.hostname","true");
        Job job = Job.getInstance(configuration);

        // 2 设置jar加载路径
        job.setJarByClass(WordCountDriver.class);

        // 3 设置map和reduce类
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);

        // 4 设置map输出
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        // 5 设置reducer输出kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        // 6 设置输入和输出路径
        FileInputFormat.setInputPaths(job,new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 7 提交
        boolean result = job.waitForCompletion(true);

        System.exit(result ? 0 : 1);
    }
}

打包项目: mvn clean package -DskipTests

将生成的jar包上传到hadoop任意节点的home目录

执行

在/home目录执行命令运行mapreduce程序:

hadoop jar word-count-demo-1.0-SNAPSHOT.jar com.twx.bigdata.WordCountDriver /twx/wordcount/input/ /twx/wordcount/output/

通过命令查看生成的文件:

hdfs dfs -ls /tangwx/wordResult
hdfs dfs -cat /tangwx/wordResult/part-r-00000