- 1. 为什么要了解 Cgroups">1. 为什么要了解 Cgroups
- 2. Cgroups简介">2. Cgroups简介
- 3. 什么是 Cgroups?">3. 什么是 Cgroups?
- 4. 为什么需要 Cgroups?">4. 为什么需要 Cgroups?
- 5. Cgroups 是如何实现的?">5. Cgroups 是如何实现的?
- 6. Cgroups 的作用">6. Cgroups 的作用
- 7. Cgroups 相关概念及相互关系">7. Cgroups 相关概念及相互关系
- 8. Cgroups 子系统介绍">8. Cgroups 子系统介绍
- 8.3 在 CentOS 中安装 Cgroups">8.3 在 CentOS 中安装 Cgroups
- 8.4 查看 service 服务在哪个 cgroup 组">8.4 查看 service 服务在哪个 cgroup 组
- 9. 如何使用 Cgroups">9. 如何使用 Cgroups
- 9.2 设置 CPU 资源的使用上限">9.2 设置 CPU 资源的使用上限
- 9.3 通过配置文件设置 cgroup(/etc/cgconfig.conf)">9.3 通过配置文件设置 cgroup(/etc/cgconfig.conf)
- 10. 查看 Cgroup">10. 查看 Cgroup
1. 为什么要了解 Cgroups
从2013年开源的 Docker 推出、2014年开源的 Kubernetes 出现,到现在的云原生技术与生态的全面普及与火热化,容器技术已经逐步成为主流的基础云原生技术之一。使用容器技术,可以很好地实现资源层面上的限制和隔离,这都依赖于 Linux 系统内核所提供的Cgroups和 Namespace技术。Linux内核提供的 Cgroups 和 Namespace 技术,为容器实现虚拟化提供了基本保证,是构建 Docker 等一些列虚拟化管理工具的基石。下面我们就来详细介绍一下 Cgroups 相关的内容。Cgroups 主要用来管理资源的分配、限制;Namespace 主要用来封装抽象、限制、隔离资源,使命名空间内的进程拥有它们自己的全局资源。
2. Cgroups简介
Cgroups 是 control groups 的缩写,是 Linux 内核提供的一种可以限制、记录、隔离进程组(process groups)所使用的物理资源(如 CPU、Memory、IO 等等)的机制。3. 什么是 Cgroups?
Cgroups 是 Linux 下的一种将进程按组进行管理的机制,在用户层看来,Cgroups 技术就是把系统中的所有进程组织成一颗一颗独立的树,每棵树都包含系统的所有进程,树的每个节点是一个进程组,而每颗树又和一个或者多个 subsystem 关联,树的作用是将进程分组,而 subsystem 的作用就是对这些组进行操作,Cgroups 的主体架构提如下:- subsystem: 一个 subsystem 就是一个内核模块,他被关联到一颗 cgroup 树之后, 就会在树的每个节点(进程组)上做具体的操作。subsystem 经常被称作 resource controller,因为它主要被用来调度或者限制每个进程组的资源,但是这个说法不完全准 确,因为有时我们将进程分组只是为了做一些监控,观察一下他们的状态,比如 perf_event subsystem。到目前为止,Linux 支持 12 种 subsystem,比如限制 CPU 的使 用时间,限制使用的内存,统计 CPU 的使用情况,冻结和恢复一组进程等,后续会对它们一一进行介绍。
- hierarchy: 一个 hierarchy 可以理解为一棵 cgroup 树,树的每个节点就是一个进程 组,每棵树都会与零到多个 subsystem 关联。在一颗树里面,会包含 Linux 系统中的所有 进程,但每个进程只能属于一个节点(进程组)。系统中可以有很多颗 cgroup 树,每棵树 都和不同的 subsystem 关联,一个进程可以属于多颗树,即一个进程可以属于多个进程 组,只是这些进程组和不同的 subsystem 关联。
4. 为什么需要 Cgroups?
在 Linux 里,一直以来就有对进程进行分组的概念和需求,比如 session group, progress group 等,后来随着人们对这方面的需求越来越多,比如需要追踪一组进程的内存和 IO 使用情况等,于是出现了 cgroup,用来统一将进程进行分组,并在分组的基础上对进程进行监控和资源控制管理等。 举个例子,Linux 系统中安装了杀毒软件 ESET 或者 ClamAV,杀毒时占用系统资源过高,影响系统承载业务运行,怎么办?单个虚拟机进程或者 docker 进程使用过高的资源,怎么办?单个Java进行占用系统过多的内存的资源,怎么办? cgroup 就是能够控制并解决上述问题的工具,cgroup 在 linux 内核实现、用于控制 linux 系统资源。5. Cgroups 是如何实现的?
在 CentOS 7 系统中(包括 Red Hat Enterprise Linux 7),通过将 cgroup 层级系统与 systemd 单位树捆绑,可以把资源管理设置从进程级别移至应用程序级别。默认情况下 systemd 会自动创建 slice、scope 和 service 单位的层级(具体的意思稍后再解释),来为 cgroup 树提供统一结构。 可以通过 systemctl 命令创建自定义 slice 进一步修改此结构。如果我们将系统的资源看成一块馅饼,那么所有资源默认会被划分为 3 个 cgroup:System, User 和 Machine。每一个 cgroup 都是一个 slice,每个 slice 都可以有自己的子 slice,如下图所示:- 1)system.slice:所有系统 service 的默认位置。
- 2)user.slice:所有用户会话的默认位置。每个用户会话都会在该 slice 下面创建一个子 slice,如果同一个用户多次登录该系统,仍然会使用相同的子 slice。
- 3)machine.slice:所有虚拟机和 Linux 容器的默认位置 控制 CPU 资源使用的其中一种方法是 shares。shares 用来设置 CPU 的相对值(你可以理解为权 重),并且是针对所有的 CPU(内核),默认值是 1024。因此在上图中,httpd, sshd, crond 和 gdm 的 CPU shares 均为 1024,System, User 和 Machine 的 CPU shares 也是 1024。
- 1)system.slice 会获得 33.333% 的 CPU 使用时间,其中每个 service 都会从 system.slice 分配的 资源中获得 1/4 的 CPU 使用时间,即 8.25% 的 CPU 使用时间。
- 2)user.slice 会获得 33.333% 的 CPU 使用时间,其中每个登录的用户都会获得 16.5% 的 CPU 使 用时间。假设有两个用户:tom 和 jack,如果 tom 注销登录或者杀死该用户会话下的所有进程, jack 就能够使用 33.333% 的 CPU 使用时间。
- 3)machine.slice 会获得 33.333% 的 CPU 使用时间,如果虚拟机被关闭或处于 idle 状态,那么 system.slice 和 user.slice 就会从这 33.333% 的 CPU 资源里分别获得 50% 的 CPU 资源,然后 均分给它们的子 slice。
6. Cgroups 的作用
Cgroups 最初的目标是为资源管理提供的一个统一的框架,既整合现有的 cpuset 等子系统,也为未来开发新的子系统提供接口。现在的 cgroups 适用于多种应用场景,从单个进程的资源控制,到实现操作系统层次的虚拟化(OS Level Virtualization),框架图如下:- 1)限制进程组可以使用的资源数量(Resource limiting )。比如:memory子系统可以为进程 组设定一个memory使用上限,一旦进程组使用的内存达到限额再申请内存,就会出发 OOM(out of memory)。
- 2)进程组的优先级控制(Prioritization )。比如:可以使用cpu子系统为某个进程组分配特定 cpu share。
- 3)记录进程组使用的资源数量(Accounting )。比如:可以使用cpuacct子系统记录某个进程 组使用的cpu时间。
- 4)进程组隔离(Isolation)。比如:使用ns子系统可以使不同的进程组使用不同的 namespace,以达到隔离的目的,不同的进程组有各自的进程、网络、文件系统挂载空间。
- 5)进程组控制(Control)。比如:使用freezer子系统可以将进程组挂起和恢复。
7. Cgroups 相关概念及相互关系
7.1 相关概念
1)任务(task):在 cgroups 中,任务就是系统的一个进程。
2)控制族群(control group):控制族群就是一组按照某种标准划分的进程。Cgroups 中的资源控制都是以控制族群为单位实现。一个进程可以加入到某个控制族群,也从一个进程组迁移到另 一个控制族群。一个进程组的进程可以使用 cgroups 以控制族群为单位分配的资源,同时受到 cgroups 以控制族群为单位设定的限制。
3)层级(hierarchy):控制族群可以组织成 hierarchical 的形式,既一颗控制族群树。控制族 群树上的子节点控制族群是父节点控制族群的孩子,继承父控制族群的特定的属性。
4)子系统(subsystem):一个子系统就是一个资源控制器,比如 cpu 子系统就是控制 cpu 时间分配的一个控制器。子系统必须附加(attach)到一个层级上才能起作用,一个子系统附加到某个 层级以后,这个层级上的所有控制族群都受到这个子系统的控制。
7.2 相互关系
- 1)每次在系统中创建新层级时,该系统中的所有任务都是那个层级的默认 cgroup(我们称之为 root cgroup ,此 cgroup 在创建层级时自动创建,后面在该层级中创建的 cgroup 都是此 cgroup 的后代)的初始成员。
- 2)一个子系统最多只能附加到一个层级。
- 3)一个层级可以附加多个子系统
- 4)一个任务可以是多个 cgroup 的成员,但是这些 cgroup 必须在不同的层级。
- 5)系统中的进程(任务)创建子进程(任务)时,该子任务自动成为其父进程所在 cgroup 的成员。然后可根据需要将该子任务移动到不同的 cgroup 中,但开始时它总是继承其父任务的 cgroup。
8. Cgroups 子系统介绍
可以看到,在 /sys/fs/cgroup 下面有很多 cpu、memory 这样的子目录,也就称为子系统 subsystem:- 1)net_cls:将 cgroup 中进程产生的网络包分类,以便 Linux 的 tc(traffic controller) 可以根据分类区分出来自某个 cgroup 的包并做限流或监控。这个子系统使用等级识别符(classid)标记网络数据包,可允许 Linux 流量控制程序 (tc)识别从具体 cgroup 中生成的数据包。
- 2)net_prio:设置 cgroup 中进程产生的网络流量的优先级。
- 3)memory:控制 cgroup 中进程的内存占用。
- 4)cpuset:在多核机器上设置 cgroup 中进程可以使用的 cpu 和内存。这个子系统为 cgroup 中的任务分配独立 CPU(在多核系统)和内存节点。
- 5)freezer:挂起(suspend)和恢复(resume) cgroup 中的进程。这个子系统挂起或者恢复 cgroup 中的任务。
- 6)blkio:设置对块设备(如硬盘)输入输出的访问控制。这个子系统为块设备设定输入/输出限制,比如物理设备(磁盘,固态硬盘,USB 等等)。
- 7)cpu:设置 cgroup 中进程的 CPU 占用。这个子系统使用调度程序提供对 CPU 的 cgroup 任务访问。
- 8)cpuacct:统计 cgroup 中进程的 CPU 占用。这个子系统自动生成 cgroup 中任务所使用的 CPU 报告。
- 9)devices:控制 cgroup 中进程对设备的访问 16 这个子系统可允许或者拒绝 cgroup 中的任务访问设备。
8.1 如何查看当前系统支持哪些 subsystem?
可以通过查看 /proc/cgroups(since Linux 2.6.24)知道当前系统支持哪些 subsystem,下面 是一个例子:每一列的说明:
#subsys_name hierarchy num_cgroups enabled
cpuset 11 1 1
cpu 3 64 1
cpuacct 3 64 1
blkio 8 64 1
memory 9 104 1
devices 5 64 1
freezer 10 4 1
net_cls 6 1 1
perf_event 7 1 1
net_prio 6 1 1
hugetlb 4 1 1
pids 2 68 1
- 1)subsys_name:subsystem 的名字
- 2)hierarchy:subsystem 所关联到的 cgroup 树的 ID,如果多个 subsystem 关联到同一颗 cgroup 树,那么他们的这个字段将一样,比如这里的 cpu 和 cpuacct 就一样,表示他们绑定到了同一颗树。如果出现下面的情况,这个字段将为0: - 当前 subsystem 没有和任何 cgroup 树绑定 - 当前 subsystem 已经和 cgroup v2 的树绑定 - 当前 subsystem 没有被内核开启
- 3)num_cgroups:subsystem 所关联的 cgroup 树中进程组的个数,也即树上节点的个数
- 4)enabled:1 表示开启,0 表示没有被开启(可以通过设置内核的启动参数 cgroup_disable 来控制 subsystem 的开启)。
8.2 Cgroups 下的 CPU 子系统
cpu 子系统用于控制 cgroup 中所有进程可以使用的 cpu 时间片。cpu subsystem 主要涉及5接口:cpu.cfs_period_us、cpu.cfs_quota_us、cpu.shares、cpu.rt_period_us、cpu.rt_runtime_us.cpu。- 1)cfs_period_us:cfs_period_us 表示一个 cpu 带宽,单位为微秒。系统总 CPU 带宽:cpu核心数 * cfs_period_us cpu。
- 2)cfs_quota_us:cfs_quota_us 表示 Cgroup 可以使用的 cpu 的带宽,单位为微秒。cfs_quota_us 为-1,表示使用的 CPU 不受 cgroup 限制。cfs_quota_us 的最小值为1ms(1000),最大值为1s。结合 cfs_period_us,就可以限制进程使用的 cpu。例如配置 cfs_period_us=10000,而 cfs_quota_us=2000。那么该进程就可以可以用2个 cpu core。
- 3)cpu.shares:通过 cfs_period_us 和 cfs_quota_us 可以以绝对比例限制 cgroup 的 cpu 使用,即cfs_quota_us/cfs_period_us 等于进程可以利用的 cpu cores,不能超过这个数值。而 cpu.shares 以相对比例限制 cgroup 的 cpu。例如:在两个 cgroup 中都将 cpu.shares 设定为 1 的任务将有相同的 CPU 时间,但在 cgroup 中将 cpu.shares 设定为 2 的任务可使用的 CPU 时间 是在 cgroup 中将 cpu.shares 设定为 1 的任务可使用的 CPU 时间的两倍。
- 4)cpu.rt_runtime_us:以微秒(µs,这里以“us”代表)为单位指定在某个时间段中 cgroup 中的任务对 CPU 资源的最长连续访问时间。建立这个限制是为了防止一个 cgroup 中的任务独占 CPU 时间。如果 cgroup 中的任务应该可以每 5 秒中可有 4 秒时间访问 CPU 资源,请将 cpu.rt_runtime_us 设定为 4000000,并将 cpu.rt_period_us 设定为 5000000。
- 5)cpu.rt_period_us:以微秒(µs,这里以“us”代表)为单位指定在某个时间段中 cgroup 对 CPU 资源访问重新分配的频率。如果某个 cgroup 中的任务应该每 5 秒钟有 4 秒时间可访问 CPU 资源,则请将 cpu.rt_runtime_us 设定为 4000000,并将 cpu.rt_period_us 设定为 5000000。注意 sched_rt_runtime_us 是实时任务的保证时间和最高占用时间,如果实时任务没有使用,可以分配给非实时任务,并且实时任务最终占用的时间不能超过这个数值,参考 Linux-85 关于 sched_rt_runtime_us 和 sched_rt_period_us。对 cpu.rt_period_us 参数的限制是必须小于父目录中的同名参数值。对 cpu.rt_runtime_us 的限制是:
即: 当前的实时进程调度算法可能导致部分实时进程被饿死,如下A和B是并列的,A的运行时时长正好覆盖了B的运行时间: Real-Time group scheduling 中提出正在开发 SCHED_EDF (Earliest Deadline First scheduling),优先调度最先结束的实时进程。
Sum_{i} runtime_{i} / global_period <= global_runtime / global_period
8.3 在 CentOS 中安装 Cgroups
#若系统未安装则进行安装,若已安装则进行更新。
yum install libcgroup
#查看运行状态,并启动服务
[root@localhost ~] service cgconfig status
Stopped
[root@localhost ~] service cgconfig start
Starting cgconfig service: [ OK ]
service cgconfig status 9 Running 1011
#查看是否安装cgroup
[root@localhost ~] grep cgroup /proc/filesystems
8.4 查看 service 服务在哪个 cgroup 组
systemctl status [pid] | grep CGroup 23
cat /proc/[pid]/cgroup
cd /sys/fs/ && find * ‐name "*.procs" ‐exec grep [pid] {} /dev/null \; 2> /dev/null
#查看进程cgroup的最快方法是使用以下bash脚本按进程名:
#!/bin/bash
THISPID=`ps ‐eo pid,comm | grep $1 | awk '{print $1}'`
cat /proc/$THISPID/cgroup
9. 如何使用 Cgroups
9.1 通过 systemctl 设置 cgroup
在使用命令 systemctl set-property 时,可以使用 tab 补全:这里有很多属性可以设置,但并不是所有的属性都是用来设置 cgroup 的,我们只需要关注 Block, CPU 和 Memory。 如果你想通过配置文件来设置 cgroup,service 可以直接在 /etc/systemd/system/xxx.service.d 目录下面创建相应的配置文件,slice 可以直接在 /run/systemd/system/xxx.slice.d 目录下面创建相应的配置文件。事实上通过 systemctl 命令行工具设置 cgroup 也会写到该目录下的配置文件中:
$ systemctl set‐property user‐1000.slice
AccuracySec= CPUAccounting= Environment= LimitCPU= LimitNICE= LimitSIGPEN DING= SendSIGKILL=
BlockIOAccounting= CPUQuota= Group= LimitDATA= LimitNOFILE= LimitSTACK= U ser=
BlockIODeviceWeight= CPUShares= KillMode= LimitFSIZE= LimitNPROC= MemoryA ccounting= WakeSystem=
BlockIOReadBandwidth= DefaultDependencies= KillSignal= LimitLOCKS= LimitR SS= MemoryLimit=
BlockIOWeight= DeviceAllow= LimitAS= LimitMEMLOCK= LimitRTPRIO= Nice=
BlockIOWriteBandwidth= DevicePolicy= LimitCORE= LimitMSGQUEUE= LimitRTTIM E= SendSIGHUP=
$ cat /run/systemd/system/user‐1000.slice.d/50‐CPUQuota.conf
[Slice]
CPUQuota=20%
9.2 设置 CPU 资源的使用上限
如果想严格控制 CPU 资源,设置 CPU 资源的使用上限,即不管 CPU 是否繁忙,对 CPU 资源的使用都不能超过这个上限。可以通过以下两个参数来设置:- 1)cpu.cfs_period_us = 统计 CPU 使用时间的周期,单位是微秒(us)
- 2)cpu.cfs_quota_us = 周期内允许占用的 CPU 时间(指单核的时间,多核则需要在设置时累加)
$ systemctl set‐property user‐1000.slice CPUQuota=20%
9.3 通过配置文件设置 cgroup(/etc/cgconfig.conf)
cgroup 配置文件所在位置 /etc/cgconfig.conf,其默认配置文件内容相当于执行命令:
mount {
cpuset = / cgroup / cpuset ;
cpu = / cgroup / cpu ;
cpuacct = / cgroup / cpuacct ;
memory = / cgroup / memory ;
devices = / cgroup / devices ;
freezer = / cgroup / freezer ;
net_cls = / cgroup / net_cls ;
blkio = / cgroup / blkio ;
}
使用 cgroup 临时对进程进行调整,直接通过命令即可,如果要持久化对进程进行控制,即重启后依然有效,需要写进配置文件 /etc/cgconfig.conf 及 /etc/cgrules.conf。
mkdir /cgroup/cpuset
mount ‐t cgroup ‐o cpuset red /cgroup/cpuset
……
mkdir /cgroup/blkio
[root@localhost ~] vi /etc/cgrules.conf
[root@localhost ~] echo 524288000 > /cgroup/memory/foo/memory.limit_in_b ytes
10. 查看 Cgroup
10.1 通过 systemd 查看 cgroup
1)systemd-cgls 命令:通过 systemd-cgls 命令来查看,它会返回系统的整体 cgroup 层级,cgroup 树的最高层 由 slice 构成,如下所示:
可以看到系统 cgroup 层级的最高层由 user.slice 和 system.slice 组成。因为系统中没有 运行虚拟机和容器,所以没有 machine.slice,所以当 CPU 繁忙时,user.slice 和 system.slice 会各获得 50% 的 CPU 使用时间。 user.slice 下面有两个子 slice:user-1000.slice 和 user-0.slice,每个子 slice 都用 User ID (UID) 来命名,因此我们很容易识别出哪个 slice 属于哪个用户。例如从上面的输出信息中可以看出 user-1000.slice 属于用户 tom,user-0.slice 属于用户 root。
$ systemd‐cgls ‐‐no‐page
├─1 /usr/lib/systemd/systemd ‐‐switched‐root ‐‐system ‐‐deserialize 22
├─user.slice
│ ├─user‐1000.slice
│ │ └─session‐11.scope
│ │ ├─9507 sshd: tom [priv]
│ │ ├─9509 sshd: tom@pts/3
│ │ └─9510 ‐bash
│ └─user‐0.slice
│ └─session‐1.scope
│ ├─ 6239 sshd: root@pts/0
│ ├─ 6241 ‐zsh
│ └─11537 systemd‐cgls ‐‐no‐page
└─system.slice 15 ├─rsyslog.service
│ └─5831 /usr/sbin/rsyslogd ‐n
├─sshd.service 18 │ └─5828 /usr/sbin/sshd ‐D
├─tuned.service
│ └─5827 /usr/bin/python2 ‐Es /usr/sbin/tuned ‐l ‐P 21 ├─crond.service
│ └─5546 /usr/sbin/crond ‐n
2)systemd-cgtop 命令:systemd-cgls 命令提供的只是 cgroup 层级的静态信息快照,要想查看 cgroup 层级的动 态信息,可以通过 systemd-cgtop 命令查看:
scope systemd-cgtop 提供的统计数据和控制选项与 top 命令类似,但该命令只显示那些开启了 资源统计功能的 service 和 slice。 如果你想开启 sshd.service 的资源统计功能,可以进行如下操作:
$ systemd‐cgtop
Path Tasks %CPU Memory Input/s Output/s
/ 161 1.2 161.0M ‐ ‐ 5 /system.slice ‐ 0.1 ‐ ‐ ‐
/system.slice/vmtoolsd.service 1 0.1 ‐ ‐ ‐
/system.slice/tuned.service 1 0.0 ‐ ‐ ‐
/system.slice/rsyslog.service 1 0.0 ‐ ‐ ‐
/system.slice/auditd.service 1 ‐ ‐ ‐ ‐
/system.slice/chronyd.service 1 ‐ ‐ ‐ ‐
/system.slice/crond.service 1 ‐ ‐ ‐ ‐
/system.slice/dbus.service 1 ‐ ‐ ‐ ‐
/system.slice/gssproxy.service 1 ‐ ‐ ‐ ‐
/system.slice/lvm2‐lvmetad.service 1 ‐ ‐ ‐ ‐
/system.slice/network.service 1 ‐ ‐ ‐ ‐
/system.slice/polkit.service 1 ‐ ‐ ‐ ‐
/system.slice/rpcbind.service 1 ‐ ‐ ‐ ‐
/system.slice/sshd.service 1 ‐ ‐ ‐ ‐
/system.slice/system‐getty.slice/getty@tty1.service 1 ‐ ‐ ‐ ‐
/system.slice/systemd‐journald.service 1 ‐ ‐ ‐ ‐
/system.slice/systemd‐logind.service 1 ‐ ‐ ‐ ‐
/system.slice/systemd‐udevd.service 1 ‐ ‐ ‐ ‐
/system.slice/vgauthd.service 1 ‐ ‐ ‐ ‐
/user.slice 3 ‐ ‐ ‐ ‐
/user.slice/user‐0.slice/session‐1.scope 3 ‐ ‐ ‐ ‐
/user.slice/user‐1000.slice 3 ‐ ‐ ‐ ‐
/user.slice/user‐1000.slice/session‐11.scope 3 ‐ ‐ ‐ ‐
/user.slice/user‐1001.slice/session‐8.scope
这时再重新运行 systemd‐cgtop 命令,就能看到 sshd 的资源使用统计了。
$ systemctl set‐property sshd.service CPUAccounting=true MemoryAccounting=true
#该命令会在 /etc/systemd/system/sshd.service.d/ 目录下创建相应的配置文件:
$ ll /etc/systemd/system/sshd.service.d/
总用量 8
4 ‐rw‐r‐‐r‐‐ 1 root root 28 5月 31 02:24 50‐CPUAccounting.conf
4 ‐rw‐r‐‐r‐‐ 1 root root 31 5月 31 02:24 50‐MemoryAccounting.conf
$ cat /etc/systemd/system/sshd.service.d/50‐CPUAccounting.conf
[Service]
CPUAccounting=yes 1415
$ cat /etc/systemd/system/sshd.service.d/50‐MemoryAccounting.conf
[Service]
MemoryAccounting=yes 1819
#配置完成之后,再重启 sshd 服务:
$ systemctl daemon‐reload 21 $ systemctl restart sshd
10.2 通过 proc 查看 cgroup
如何查看当前进程属于哪些 cgroup 可以通过查看 /proc/[pid]/cgroup(since Linux 2.6.24)知道指定进程属于哪些cgroup,如下:每一行包含用冒号隔开的三列,他们的意思分别是:
$ cat /proc/777/cgroup
11:cpuset:/
10:freezer:/
9:memory:/system.slice/cron.service
8:blkio:/system.slice/cron.service
7:perf_event:/ 7 6:net_cls,net_prio:/
5:devices:/system.slice/cron.service
4:hugetlb:/
3:cpu,cpuacct:/system.slice/cron.service
2:pids:/system.slice/cron.service
1:name=systemd:/system.slice/cron.service
cgroup树的ID :和cgroup树绑定的所有subsystem :进程在cgroup树中的路径
- 1)cgroup 树的 ID,和 /proc/cgroups 文件中的 ID 一一对应。
- 2)和 cgroup 树绑定的所有 subsystem,多个 subsystem 之间用逗号隔开。这里 name=systemd 表示没有和任何 subsystem 绑定,只是给他起了个名字叫 systemd。
- 3)进程在 cgroup 树中的路径,即进程所属的 cgroup,这个路径是相对于挂载点的相对路径。
10.3 通过 /sys 查看 cgroup
查看 cgroup 下 CPU 资源的使用上限:这表示用户 tom 在一个使用周期内(100 毫秒)可以使用 20 毫秒的 CPU 时间。不管 CPU 是否空闲,该用户使用的 CPU 资源都不会超过这个限制。 CPUQuota 的值可以超过 100%,例如:如果系统的 CPU 是多核,且 CPUQuota 的值为 200%,那么该 slice 就能够使用 2 核的 CPU 时间。
$ cat /sys/fs/cgroup/cpu,cpuacct/user.slice/user‐1000.slice/cpu.cfs_perio d_us
100000
$ cat /sys/fs/cgroup/cpu,cpuacct/user.slice/user‐1000.slice/cpu.cfs_quota _us
20000