难度:简单
描述:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例:
示例 1:输入: 2输出: 2解释: 有两种方法可以爬到楼顶。1. 1 阶 + 1 阶2. 2 阶示例 2:输入: 3输出: 3解释: 有三种方法可以爬到楼顶。1. 1 阶 + 1 阶 + 1 阶2. 1 阶 + 2 阶3. 2 阶 + 1 阶
思路分析:
利用动态规划
第 ii 阶可以由以下两种方法得到:
在第 (i-1)(i−1) 阶后向上爬一阶。
在第 (i-2)(i−2) 阶后向上爬 22 阶。
所以到达第 ii 阶的方法总数就是到第 (i-1)(i−1) 阶和第 (i-2)(i−2) 阶的方法数之和。
令 dp[i]dp[i] 表示能到达第 ii 阶的方法总数:
dp[i]=dp[i-1]+dp[i-2]
代码实现:
var climbStairs = function(n) {if (n <= 2) {return n}let num1 = 1;let num2 = 2;let Num = 0;for (let i = 2; i < n; i++) {numN = num1 + num2;num1 = num2;num2 = numN;}return numN;};
var climbStairs = function(n) {if(n <= 2) return n;return climbStairs(n-1) + climbStairs(n-2)};
