定义:
model = Sequential()mode.add(Dense(input_dimension = 28*28, units = 500,))
训练:
model.compile(loss='', optimizer='', metrics=['accuracy'])model.fit(x_train, y_train, batch_size=100, epochs=20)
预测:
score = model.evaluate(x_test, y_test) # 计算正确率result = model.predict(x_test) # 预测
