一、串口通信协议简介

串口通讯(Serial Communication)是一种设备间非常常用的串行通讯方式,因为它简单便捷,大部分电子设备都支持该通讯方式,电子工程师在调试设备时也经常使用该通讯方式输出调试信息。
在计算机科学里,大部分复杂的问题都可以通过分层来简化。如芯片被分为内核层和片上外设;STM32 标准库则是在寄存器与用户代码之间的软件层。
对于通讯协议,我们也以分层的方式来理解,最基本的是把它分为物理层和协议层。物理层规定通讯系统中具有
机械、电子功能部分的特性,确保原始数据在物理媒体的传输。协议层主要规定通讯逻辑,统一收发双方的数据打包、解包标准。简单来说物理层规定我们用嘴巴还是用肢体来交流,协议层则规定我们用中文还是英文来交流。

(一)物理层

串口通讯的物理层有很多标准及变种,我们主要讲解 RS-232 标准 ,RS-232 标准主要规定了信号的用途、通讯接口以及信号的电平标准。
使用 RS-232 标准的串口设备间常见的通讯结构见图
image.png
串口通信结构图
上面的通讯方式中,两个通讯设备的“DB9 接口”之间通过串口信号线建立起连接,串口信号线中使用“RS-232 标准”传输数据信号。由于 RS-232 电平标准的信号不能直接被控制器直接识别,所以这些信号会经过一个“电平转换芯片”转换成控制器能识别的“TTL 校准”的电平信号,才能实现通讯。

1、电平标准

根据通讯使用的电平标准不同,串口通讯可分为 TTL 标准及 RS-232 标准,见下表

通信标准 电平标准(发送端)
5V TTL 逻辑1:2.4V~5V 逻辑0:0~0.5V
RS-232 逻辑1:-15V~-3V 逻辑0:+3~+15V

常见的电子电路中常使用 TTL 的电平标准,理想状态下,使用 5V 表示二进制逻辑 1,使用 0V 表示逻辑 0;而为了增加串口通讯的远距离传输及抗干扰能力,它使用-15V 表示逻辑 1,+15V 表示逻辑 0。使用 RS232 与 TTL 电平校准表示同一个信号时的对比见图
image.png
RS-232与TTL电平下表示同一个信号
因为控制器一般使用 TTL 电平标准,所以常常会使用 MA3232 芯片对 TTL 及 RS-232电平的信号进行互相转换。

2、RS-232信号线

在最初的应用中,RS-232 串口标准常用于计算机、路由与调制调解器(MODEN,俗称“猫”)之间的通讯 ,在这种通讯系统中,设备被分为数据终端设备 DTE(计算机、路由)和数据通讯设备 DCE(调制调解器)。我们以这种通讯模型讲解它们的信号线连接方式及各个信号线的作用。
接线口以针式引出信号线的称为公头,以孔式引出信号线的称为母头。在计算机中一般引出公头接口,而在调制调解器设备中引出的一般为母头,使用上图中的串口线即可把它与计算机连接起来。通讯时,串口线中传输的信号就是使用前面讲解的 RS-232 标准调制的。
image.png
DB9标准的公头及母头接法
表 DB9信号线说明

序号 名称 符号 数据方向 说明
1 载波检测 DCD DTE—>DCE Data Carrier Detect , 数 据 载 波 检 测 , 用 于DTE 告知对方,本机是否收到对方的载波信号
2 接收数据 RXD DTE<—DCE Receive Data,数据接收信号,即输入 。
3 发送数据 TXD DTE—>DCE Transmit Data,数据发送信号,即输出。两个设备之间的 TXD 与 RXD 应交叉相连
4 数据终端(DTE)就绪 DTR DTE—>DCE Data Terminal Ready,数据终端就绪,用于DTE 向对方告知本机是否已准备好
5 信号地 GND 地线,两个通讯设备之间的地电位可能不一样,这会影响收发双方的电平信号,所以两个串口设备之间必须要使用地线连接,即共地。
6 数据设备(DCE)就绪 DSR DTE<—DCE Data Set Ready,数据发送就绪,用于 DCE 告知对方本机是否处于待命状态
7 请求发送 RTS DTE—>DCE Request To Send,请求发送, DTE 请求 DCE本设备向 DCE 端发送数据
8 允许发送 CTS DTE<—DCE Clear To Send,允许发送,DCE 回应对方的RTS 发送请求,告知对方是否可以发送数据
9 响铃指示 RI DTE<—DCE Ring Indicator,响铃指示,表示 DCE 端与线路已接通

上表中的是计算机端的 DB9 公头标准接法,由于两个通讯设备之间的收发信号(RXD与 TXD)应交叉相连,所以调制调解器端的 DB9 母头的收发信号接法一般与公头的相反,两个设备之间连接时,只要使用“直通型”的串口线连接起来即可,见下图 。
image.png
计算机与调制解调器的信号线连接
串口线中的 RTS、CTS、DSR、DTR 及 DCD 信号,使用逻辑 1 表示信号有效,逻辑 0表示信号无效。例如,当计算机端控制 DTR 信号线表示为逻辑 1 时,它是为了告知远端的调制调解器,本机已准备好接收数据,0 则表示还没准备就绪。
在目前的其它工业控制使用的串口通讯中,一般只使用 RXD、TXD 以及 GND 三条信号线,直接传输数据信号。而 RTS、CTS、DSR、DTR 及 DCD 信号都被裁剪掉了。

(二)通信协议层

串口通讯的数据包由发送设备通过自身的 TXD 接口传输到接收设备的 RXD 接口。在串口通讯的协议层中,规定了数据包的内容,它由启始位、主体数据、校验位以及停止位组成,通讯双方的数据包格式要约定一致才能正常收发数据,其组成见下图
image.png
串口数据包基本组成

1、波特率

主要讲解的是串口异步通讯,异步通讯中由于没有时钟信号(如前面讲解的 DB9接口中是没有时钟信号的),所以两个通讯设备之间需要约定好波特率,即每个码元的长度,以便对信号进行解码,上图图中用虚线分开的每一格就是代表一个码元。常见的波特率为4800、9600、115200 等。

2、通讯的起始和停止信号

串口通讯的一个数据包从起始信号开始,直到停止信号结束。数据包的起始信号由一个逻辑 0 的数据位表示,而数据包的停止信号可由 0.5、1、1.5 或 2 个逻辑 1 的数据位表示,只要双方约定一致即可。

3、有效数据

在数据包的起始位之后紧接着的就是要传输的主体数据内容,也称为有效数据,有效数据的长度常被约定为 5、6、7 或 8 位长。

4、 数据校验

有效数据之后,有一个可选的数据校验位。由于数据通信相对更容易受到外部干扰导致传输数据出现偏差,可以在传输过程加上校验位来解决这个问题。校验方法有奇校验(odd)、偶校验(even)、0 校验(space)、1 校验(mark)以及无校验(noparity),它们介绍如下:

  • 奇校验要求有效数据和校验位中“1”的个数为奇数,比如一个 8 位长的有效数据为:01101001,此时总共有 4 个“1”,为达到奇校验效果,校验位为“1”,最后传输的数据将是 8 位的有效数据加上 1 位的校验位总共 9 位。
  • 偶校验与奇校验要求刚好相反,要求帧数据和校验位中“1”的个数为偶数,比如数据帧:11001010,此时数据帧“1”的个数为 4 个,所以偶校验位为“0”。
  • 0 校验是不管有效数据中的内容是什么,校验位总为“0”,
  • 1 校验是校验位总为“1”。
  • 无校验的情况下,数据包中不包含校验位

参考资料