BIO

同步阻塞式IO,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销,当然可以通过线程池机制改善。

NIO

同步非阻塞式IO,服务器实现模式为一个请求一个线程,即客户端发送的连接请求都会注册到多路复用器上,多路复用器轮询到连接有I/O请求时才启动一个线程进行处理。

NIO 主要有三大核心部分

Buffer(缓冲区)
服务端这边接收数据必须通过 Channel 将数据读入到 Buffer 中,然后再从 Buffer 中取出数据来处理。高效的数据容器,除了布尔类型,所有原始数据类型都有相应的 Buffer 实现
Channel(通道)
Channel 和 IO 中的 Stream(流)是差不多一个等级的。 只不过 Stream 是单向的,譬如: InputStream, OutputStream, 而 Channel 是双向的,既可以用来进行读操作,又可以用来进行写操作。类似在 Linux 之类操作系统上看到的文件描述符,是 NIO 中被用来支持批量式 IO 操作的一种抽象。File 或者 Socket,通常被认为是比较高层次的抽象,而 Channel 则是更加操作系统底层的一种抽象,这也使得 NIO 得以充分利用现代操作系统底层机制,获得特定场景的性能优化如: DMA(Direct Memory Access)。不同层次的抽象是相互关联的,我们可以通过Socket获取 Channel,反之亦然。
Selector
能够检测多个注册的通道上是否有事件发生,如果有事件发生,便获取事件然后针对每个事件进行相应的响应处理。这样一来,只是用一个单线程就可以管理多个通道,也就是管理多个连接。NIO 实现多路复用的基础,它提供了一种高效的机制,可以检测到注册在Selector 上的多个 Channel 中,是否有 Channel 处于就绪状态,进而实现了单线程对多 Channel 的高效管理。

AIO

异步非堵塞的 IO 操作方式,基于事件和回调机制实现的,也就是应用操作之后会直接返回,不会堵塞在那里,当后台处理完成,操作系统会通知相应的线程进行后续的操作

多路复用器

有一个线程不断去轮询多个 socket 的状态,只有当 socket 真正有读写事件时,才真正调用实际的 IO 读写操作。

短连接

server 端 与 client 端建立连接之后,读写完成之后就关闭掉连接,如果下一次再要互相发送消息,就要重新连接。短连接的有点很明显,就是管理和实现都比较简单,缺点也很明显,每一次的读写都要建立连接必然会带来大量网络资源的消耗,并且连接的建立也需要耗费时间。

长连接

client 向 server 双方建立连接之后,即使 client 与 server 完成一次读写,它们之间的连接并不会主动关闭,后续的读写操作会继续使用这个连接。长连接的可以省去较多的 TCP 建立和关闭的操作,降低对网络资源的依赖,节约时间。对于频繁请求资源的客户来说,非常适用长连接。