Redis 单副本(节点)

Redis 单副本,采用单个Redis节点部署架构,没有备用节点实时同步数据,不提供数据持久化和备份策略,适用于数据可靠性要求不高的纯缓存业务场景。

优点

  • 架构简单,部署方便。
  • 高性价比:缓存使用时无需备用节点(单实例可用性可以用supervisor或crontab保证),当然为了满足业务的高可用性,也可以牺牲一个备用节点,但同一时刻只有一个实例对外提供服务。
  • 高性能。

    缺点

  • 不保证数据的可靠性。

  • 在缓存使用,进程重启后,数据丢失,即使有备用的节点解决高性能,但是仍然不能解决缓存预热问题,因此不适用于数据可靠性要求高的业务。
  • 高性能受限于单核CPU的处理能力(Redis是单线程机制),CPU为主要瓶颈,所以适合操作命令简单,排序,计算较少的场景。也可以考虑用memcached替代。

    Redis 多副本(主从复制)

    Redis 多副本,采用主从(replication)部署结构,相较于单副本而言最大的特点就是主从实例间数据实时同步,并且提供数据持久化和备份策略。

    优点

  • 高可靠性:一方面,采用双主备架构,能够在主库出现故障时自动进行主备切换,从库提升为主库提供服务,保证服务平稳运行;另一方面,开启数据持久化功能和配置合理的备份策略,能有效的解决数据误操作和数据异常丢失的问题。

  • 读写分离策略:从节点可以扩展主库节点的读能力,有效应对大并发量的读操作。

    缺点

  • 故障恢复复杂,如果没有Redis HA 系统(需要开发),当主库节点出现故障时,需要手动将一个从节点晋升为主节点,同时需要通知业务方变更配置,并且需要让其他从库节点去复制新主库节点,整个过程需要人为干预,比较繁琐。

  • 主库的写能力受到单机的限制,可以考虑分片。
  • 主库的存储能力受到单机的限制,可以考虑Pika。
  • 原生复制的弊端在早期的版本中也会比价突出,如:Redis 复制中断后,Slave 会发起 psync ,此时如果同步不成功,则会进行全量同步,主库执行全量备份的同时,可能会造成毫秒或秒级的卡顿。
  • 又由于COW 机制,导致极端情况下的主库内存溢出,程序异常退出或宕机;主库节点生成备份文件导致服务器磁盘IO和CPU 资源消耗;发送数GB 大小的备份文件导致服务器出口带宽暴增,阻塞请求

    全量同步

    Redis全量复制一般发生在Slave初始化阶段,这时Slave需要将Master上的所有数据都复制一份。具体步骤如下:
    - 从服务器连接主服务器,发送SYNC命令;
    - 主服务器接收到SYNC命名后,开始执行BGSAVE命令生成RDB文件并使用缓冲区记录此后执行的所有写命令;
    - 主服务器BGSAVE执行完后,向所有从服务器发送快照文件,并在发送期间继续记录被执行的写命令;
    - 从服务器收到快照文件后丢弃所有旧数据,载入收到的快照;
    - 主服务器快照发送完毕后开始向从服务器发送缓冲区中的写命令;
    - 从服务器完成对快照的载入,开始接收命令请求,并执行来自主服务器缓冲区的写命令;
    image.png

    增量同步

    Redis增量复制是指Slave初始化后开始正常工作时主服务器发生的写操作同步到从服务器的过程。
    增量复制的过程主要是主服务器每执行一个写命令就会向从服务器发送相同的写命令,从服务器接收并执行收到的写命令。

    Redis Sentinel(哨兵)

    Redis Sentinel 是社区版本推出的原生高可用解决方案,其部署架构主要包括两部分:Redis Sentinel 集群和 Redis 数据集群。
    其中Redis Sentinel 集群是由若干Sentinel 节点组成的分布式集群,可以实现故障发现,故障自动转移,配置中心和客户端通知。Redis Sentinel 的节点数量要满足 2n + 1 (n>=1)的奇数个。
    哨兵是一个独立的进程,哨兵会实时监控master节点的状态,当master不可用时会从slave节点中选出一个作为新的master,并修改其他节点的配置指向到新的master。
    哨兵作用

  • 通过发送命令,让Redis服务器返回监控其运行状态,包括主服务器和从服务器。

  • 当哨兵监测到master宕机,会自动将slave切换成master,然后通过发布订阅模式通知其他的从服务器,修改配置文件,让它们切换主机。

    优点

  • Redis Sentinel 集群部署简单;

  • 能够解决 Redis 主从模式下的高可用切换问题;
  • 很方便实现 Redis 数据节点的线形扩展,轻松突破 Redis 自身单线程瓶颈,可极大满足 Redis 大容量或高性能的业务需求;
  • 可以实现一套 Sentinel 监控一组 Redis 数据节点或多组数据节点。

    缺点

  • 部署相对 Redis 主从模式要复杂一些,原理理解更繁琐;

  • 资源浪费,Redis 数据节点中 slave 节点作为备份节点不提供服务;
  • Redis Sentinel 主要是针对 Redis 数据节点中的主节点的高可用切换,对 Redis 的数据节点做失败判定分为主观下线和客观下线两种,对于 Redis 的从节点有对节点做主观下线操作,并不执行故障转移。
  • 不能解决读写分离问题,实现起来相对复杂。

执行任务

监控(Monitoring):Sentinel 会不断地检查你的主服务器和从服务器是否运作正常。
提醒(Notification):当被监控的某个 Redis 服务器出现问题时, Sentinel 可以通过 API 向管理员或者其他应用程序发送通知。
自动故障迁移(Automatic failover): 当一个主服务器不能正常工作时, Sentinel 会开始一次自动故障迁移操作, 它会将失效主服务器的其中一个从服务器升级为新的主服务器, 并让失效主服务器的其他从服务器改为复制新的主服务器; 当客户端试图连接失效的主服务器时, 集群也会向客户端返回新主服务器的地址, 使得集群可以使用新主服务器代替失效服务器。
基本概述:由一个或多个Sentinel 实例 组成的Sentinel 系统可以监视任意多个主服务器,以及这些主服务器属下的所有从服务器,并在被监视的主服务器进入下线状态时,自动将下线主服务器属下的某个从服务器升级为新的主服务器
故障切换(failover)的过程。假设主服务器宕机,哨兵1先检测到这个结果,系统并不会马上进行failover过程,仅仅是哨兵1主观的认为主服务器不可用,这个现象成为主观下线。当后面的哨兵也检测到主服务器不可用,并且数量达到一定值时,那么哨兵之间就会进行一次投票,投票的结果由一个哨兵发起,进行failover操作。切换成功后,就会通过发布订阅模式,让各个哨兵把自己监控的从服务器实现切换主机,这个过程称为客观下线。

Redis Cluster (集群)

Redis Cluster 是社区版推出的 Redis 分布式集群解决方案,主要解决 Redis 分布式方面的需求,比如,当遇到单机内存,并发和流量等瓶颈的时候,Redis Cluster 能起到很好的负载均衡的目的。
Redis Cluster 集群节点最小配置 6 个节点以上(3 主 3 从),其中主节点提供读写操作,从节点作为备用节点,不提供请求,只作为故障转移使用。
Redis Cluster 采用虚拟槽分区(slot),所有的键根据哈希函数映射到 0~16383 个整数槽内,每个节点负责维护一部分槽以及槽所映射的键值数据。
内部有cluster,可以理解为是一个集群管理的插件。当我们的存取的 Key到达的时候,Redis 会根据 crc16的算法得出一个结果,然后把结果对 16384 求余数,这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作。
为了保证高可用,redis-cluster集群引入了主从模式,一个主节点对应一个或者多个从节点,当主节点宕机的时候,就会启用从节点。当其它主节点ping一个主节点A时,如果半数以上的主节点与A通信超时,那么认为主节点A宕机了。如果主节点A和它的从节点A1都宕机了,那么该集群就无法再提供服务了
image.png
1、所有的redis节点彼此互联(PING-PONG机制),内部使用二进制协议优化传输速度和带宽。
2、节点的fail是通过集群中超过半数的节点检测失效时才生效。
3、客户端与redis节点直连,不需要中间proxy层.客户端不需要连接集群所有节点,连接集群中任何一个可用节点即可。
4、redis-cluster把所有的物理节点映射到[0-16383]slot上(不一定是平均分配),cluster 负责维护node<->slot<->value。
5、Redis集群预分好16384个桶,当需要在 Redis 集群中放置一个 key-value 时,根据 CRC16(key) mod 16384的值,决定将一个key放到哪个桶中。

优点

  • 无中心架构;
  • 数据按照 slot 存储分布在多个节点,节点间数据共享,可动态调整数据分布;
  • 可扩展性:可线性扩展到 1000 多个节点,节点可动态添加或删除;
  • 高可用性:部分节点不可用时,集群仍可用。通过增加 Slave 做 standby 数据副本,能够实现故障自动 failover,节点之间通过 gossip 协议交换状态信息,用投票机制完成 Slave 到 Master 的角色提升;
  • 降低运维成本,提高系统的扩展性和可用性。

缺点

  • Client 实现复杂,驱动要求实现 Smart Client,缓存 slots mapping 信息并及时更新,提高了开发难度,客户端的不成熟影响业务的稳定性。目前仅 JedisCluster 相对成熟,异常处理部分还不完善,比如常见的“max redirect exception”。
  • 节点会因为某些原因发生阻塞(阻塞时间大于 clutser-node-timeout),被判断下线,这种 failover 是没有必要的。
  • 数据通过异步复制,不保证数据的强一致性。
  • 多个业务使用同一套集群时,无法根据统计区分冷热数据,资源隔离性较差,容易出现相互影响的情况。
  • Slave 在集群中充当“冷备”,不能缓解读压力,当然可以通过 SDK 的合理设计来提高 Slave 资源的利用率。
  • Key 批量操作限制,如使用 mset、mget 目前只支持具有相同 slot 值的 Key 执行批量操作。对于映射为不同 slot 值的 Key 由于 Keys 不支持跨 slot 查询,所以执行 mset、mget、sunion 等操作支持不友好。
  • Key 事务操作支持有限,只支持多 key 在同一节点上的事务操作,当多个 Key 分布于不同的节点上时无法使用事务功能。
  • Key 作为数据分区的最小粒度,不能将一个很大的键值对象如 hash、list 等映射到不同的节点。
  • 不支持多数据库空间,单机下的 redis 可以支持到 16 个数据库,集群模式下只能使用 1 个数据库空间,即db 0 。
  • 复制结构只支持一层,从节点只能复制主节点,不支持嵌套树状复制结构。
  • 避免产生 hot-key,导致主库节点成为系统的短板。
  • 避免产生 big-key,导致网卡撑爆、慢查询等。
  • 重试时间应该大于 cluster-node-time 时间。
  • Redis Cluster 不建议使用 pipeline和multi-keys 操作,减少 max redirect 产生的场景。

Redis 高可用演变的过程
redis最开始使用主从模式做集群,若master宕机需要手动配置slave转为master;
为了高可用提出来哨兵模式,该模式下有一个哨兵监视master和slave,若master宕机可自动将slave转为master,但它也有一个问题,就是不能动态扩充;Redis 的哨兵模式基本已经可以实现高可用,读写分离 ,但是在这种模式下每台 Redis 服务器都存储相同的数据,很浪费内存。
在redis3.0上加入了 Cluster 集群模式,实现了 Redis 的分布式存储,也就是说每台 Redis 节点上存储不同的内容,所以在3.x提出cluster集群模式

读写分离
https://blog.csdn.net/fd2025/article/details/80076832?utm_medium=distribute.pc_aggpage_search_result.none-task-blog-2~all~first_rank_v2~rank_v25-6-80076832.nonecase&utm_term=redis%E5%8F%AF%E4%BB%A5%E8%AF%BB%E5%8F%96%E5%A4%87%E8%8A%82%E7%82%B9%E5%90%97&spm=1000.2123.3001.4430