奇异值分解

奇异值分解(SVD) - 漫漫成长的文章 - 知乎 https://zhuanlan.zhihu.com/p/29846048

奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。

回顾特征值和特征向量

首先回顾下特征值和特征向量的定义如下:

奇异值分解 - 图1

其中 奇异值分解 - 图2 是一个 奇异值分解 - 图3 矩阵, 奇异值分解 - 图4 是一个 奇异值分解 - 图5 维向量,则 奇异值分解 - 图6 是矩阵 奇异值分解 - 图7 的一个特征值,而 奇异值分解 - 图8 是矩阵 奇异值分解 - 图9 的特征值 奇异值分解 - 图10 所对应的特征向量。

求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的n个特征值 奇异值分解 - 图11 ,以及这 奇异值分解 - 图12 个特征值所对应的特征向量 奇异值分解 - 图13

那么矩阵A就可以用下式的特征分解表示:

奇异值分解 - 图14

其中W是这n个特征向量所张成的n×n维矩阵,而Σ为这n个特征值为主对角线的n×n维矩阵。

一般我们会把W的这n个特征向量标准化,即满足 奇异值分解 - 图15 ,或者 奇异值分解 - 图16 ,此时W的

n个特征向量为标准正交基,满足 奇异值分解 - 图17 ,即 奇异值分解 - 图18 ,也就是说W为酉矩阵。

这样我们的特征分解表达式可以写成

奇异值分解 - 图19

注意到要进行特征分解,矩阵A必须为方阵。

那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

SVD的定义

SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:

奇异值分解 - 图20

其中 奇异值分解 - 图21 是一个 奇异值分解 - 图22 的矩阵, 奇异值分解 - 图23 是一个 奇异值分解 - 图24 的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值, 奇异值分解 - 图25 是一个 奇异值分解 - 图26 的矩阵。 奇异值分解 - 图27奇异值分解 - 图28 都是酉矩阵,即满足

奇异值分解 - 图29 。下图可以很形象的看出上面SVD的定义:

奇异值分解 - 图30

那么我们如何求出SVD分解后的U,Σ,V这三个矩阵呢?

如果我们将A的转置和A做矩阵乘法,那么会得到n×n的一个方阵 奇异值分解 - 图31 。既然 奇异值分解 - 图32 是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:

奇异值分解 - 图33

这样我们就可以得到矩阵 奇异值分解 - 图34 的n个特征值和对应的n个特征向量v了。将 奇异值分解 - 图35 的所有特征向量张成一个n×n的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量。

如果我们将A和A的转置做矩阵乘法,那么会得到m×m的一个方阵 奇异值分解 - 图36 。既然 奇异值分解 - 图37 是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:

奇异值分解 - 图38

这样我们就可以得到矩阵 奇异值分解 - 图39 的m个特征值和对应的m个特征向量u了。将 奇异值分解 - 图40 的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。

U和V我们都求出来了,现在就剩下奇异值矩阵Σ没有求出了.

由于Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了。

我们注意到:

奇异值分解 - 图41

这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵Σ。

上面还有一个问题没有讲,就是我们说 奇异值分解 - 图42 的特征向量组成的就是我们SVD中的V矩阵,而

奇异值分解 - 图43 的特征向量组成的就是我们SVD中的U矩阵,这有什么根据吗?这个其实很容易证明,我们以V矩阵的证明为例。

奇异值分解 - 图44

上式证明使用了 奇异值分解 - 图45 。可以看出 奇异值分解 - 图46 的特征向量组成的的确就是我们SVD中的V矩阵。类似的方法可以得到 奇异值分解 - 图47 的特征向量组成的就是我们SVD中的U矩阵。

进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:

奇异值分解 - 图48

这样也就是说,我们可以不用 奇异值分解 - 图49 来计算奇异值,也可以通过求出 奇异值分解 - 图50 的特征值取平方根来求奇异值。

SVD计算举例

这里我们用一个简单的例子来说明矩阵是如何进行奇异值分解的。我们的矩阵A定义为:

奇异值分解 - 图51

首先求出 奇异值分解 - 图52奇异值分解 - 图53

奇异值分解 - 图54

进而求出 奇异值分解 - 图55 的特征值和特征向量:

奇异值分解 - 图56

接着求出 奇异值分解 - 图57 的特征值和特征向量:

奇异值分解 - 图58

利用 奇异值分解 - 图59 求奇异值:

奇异值分解 - 图60

也可以用 奇异值分解 - 图61 直接求出奇异值为 奇异值分解 - 图62 和1.

最终得到A的奇异值分解为:

奇异值分解 - 图63

SVD的一些性质

对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。

也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。

也就是说:

奇异值分解 - 图64

其中k要比n小很多,也就是一个大的矩阵A可以用三个小的矩阵 奇异值分解 - 图65 来表示。如下图所示,现在我们的矩阵A只需要灰色的部分的三个小矩阵就可以近似描述了。

奇异值分解 - 图66

由于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)。

下面我们就对SVD用于PCA降维做一个介绍。

SVD用于PCA

PCA降维,需要找到样本协方差矩阵 奇异值分解 - 图67 的最大的d个特征向量,然后用这最大的d个特征向量张成的矩阵来做低维投影降维。可以看出,在这个过程中需要先求出协方差矩阵 奇异值分解 - 图68 ,当样本数多样本特征数也多的时候,这个计算量是很大的。

注意到我们的SVD也可以得到协方差矩阵 奇异值分解 - 图69 最大的d个特征向量张成的矩阵,但是SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵 奇异值分解 - 图70 ,也能求出我们的右奇异矩阵V。也就是说,我们的PCA算法可以不用做特征分解,而是做SVD来完成。这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD,而不是我们我们认为的暴力特征分解。

另一方面,注意到PCA仅仅使用了我们SVD的右奇异矩阵,没有使用左奇异矩阵,那么左奇异矩阵有什么用呢?

假设我们的样本是m×n的矩阵X,如果我们通过SVD找到了矩阵 奇异值分解 - 图71 最大的d个特征向量张成的m×d维矩阵U,则我们如果进行如下处理:

奇异值分解 - 图72

可以得到一个d×n的矩阵X‘,这个矩阵和我们原来的m×n维样本矩阵X相比,行数从m减到了k,可见对行数进行了压缩。

左奇异矩阵可以用于行数的压缩。

右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。

SVD小结

SVD作为一个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现并行化,因此更是大展身手。

SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。