5.1 Atomic系列类整体介绍
版本说明
在JDK1.5版本之前,多行代码的原子性主要通过synchronized关键字进行保证。
在JDK1.5版本,Java提供了原子类型专门确保变量操作的原子性。
开发包整体说明
原子类型位于java.util.concurrent.atomic包下,其主要类如下:
原子类型划分
为了方面对这些类逐级掌握,我将这些原子类型分为以下几类:
- 普通原子类型:提供对boolean、int、long和对象的原子性操作。
- AtomicBoolean
- AtomicInteger
- AtomicLong
- AtomicReference
- 原子类型数组:提供对数组元素的原子性操作。
- AtomicLongArray
- AtomicIntegerArray
- AtomicReferenceArray
- 原子类型字段更新器:提供对指定对象的指定字段进行原子性操作。
- AtomicLongFieldUpdater
- AtomicIntegerFieldUpdater
- AtomicReferenceFieldUpdater
- 带版本号的原子引用类型:以版本戳的方式解决原子类型的ABA问题。
- AtomicStampedReference
- AtomicMarkableReference
- 原子累加器(JDK1.8):AtomicLong和AtomicDouble的升级类型,专门用于数据统计,性能更高。
- DoubleAccumulator
- DoubleAdder
- LongAccumulator
- LongAdder
5.2 Atomic使用
5.2.1 原子整数
原子整数
J.U.C 并发包提供了:
AtomicBooleanAtomicIntegerAtomicLong
以 AtomicInteger为例
AtomicInteger i = new AtomicInteger(0);// 获取并自增(i = 0, 结果 i = 1, 返回 0),类似于 i++System.out.println(i.getAndIncrement());// 自增并获取(i = 1, 结果 i = 2, 返回 2),类似于 ++iSystem.out.println(i.incrementAndGet());// 自减并获取(i = 2, 结果 i = 1, 返回 1),类似于 --iSystem.out.println(i.decrementAndGet());// 获取并自减(i = 1, 结果 i = 0, 返回 1),类似于 i--System.out.println(i.getAndDecrement());// 获取并加值(i = 0, 结果 i = 5, 返回 0)System.out.println(i.getAndAdd(5));// 加值并获取(i = 5, 结果 i = 0, 返回 0)System.out.println(i.addAndGet(-5));// 获取并更新(i = 0, p 为 i 的当前值, 结果 i = -2, 返回 0)// 其中函数中的操作能保证原子,但函数需要无副作用System.out.println(i.getAndUpdate(p -> p - 2));// 更新并获取(i = -2, p 为 i 的当前值, 结果 i = 0, 返回 0)// 其中函数中的操作能保证原子,但函数需要无副作用System.out.println(i.updateAndGet(p -> p + 2));// 获取并计算(i = 0, p 为 i 的当前值, x 为参数1, 结果 i = 10, 返回 0)// 其中函数中的操作能保证原子,但函数需要无副作用// getAndUpdate 如果在 lambda 中引用了外部的局部变量,要保证该局部变量是 final 的// getAndAccumulate 可以通过 参数1 来引用外部的局部变量,但因为其不在 lambda 中因此不必是 finalSystem.out.println(i.getAndAccumulate(10, (p, x) -> p + x));// 计算并获取(i = 10, p 为 i 的当前值, x 为参数1, 结果 i = 0, 返回 0)// 其中函数中的操作能保证原子,但函数需要无副作用System.out.println(i.accumulateAndGet(-10, (p, x) -> p + x));
5.2.2 原子引用
AtomicReferenceAtomicMarkableReferenceAtomicStampedReference
为什么需要原子引用类型?
有如下方法
public interface DecimalAccount {// 获取余额BigDecimal getBalance();// 取款void withdraw(BigDecimal amount);/*** 方法内会启动 1000 个线程,每个线程做 -10 元 的操作* 如果初始余额为 10000 那么正确的结果应当是 0*/static void demo(DecimalAccount account) {List<Thread> ts = new ArrayList<>();for (int i = 0; i < 1000; i++) {ts.add(new Thread(() -> {account.withdraw(BigDecimal.TEN);}));}ts.forEach(Thread::start);ts.forEach(t -> {try {t.join();} catch (InterruptedException e) {e.printStackTrace();}});System.out.println(account.getBalance());}}
试着提供不同的 DecimalAccount 实现,实现安全的取款操作
不安全实现
class DecimalAccountUnsafe implements DecimalAccount {
BigDecimal balance;
public DecimalAccountUnsafe(BigDecimal balance) {
this.balance = balance;
}
@Override
public BigDecimal getBalance() {
return balance;
}
@Override
public void withdraw(BigDecimal amount) {
BigDecimal balance = this.getBalance();
this.balance = balance.subtract(amount);
}
}
安全实现-使用锁
class DecimalAccountSafeLock implements DecimalAccount {
private final Object lock = new Object();
BigDecimal balance;
public DecimalAccountSafeLock(BigDecimal balance) {
this.balance = balance;
}
@Override
public BigDecimal getBalance() {
return balance;
}
@Override
public void withdraw(BigDecimal amount) {
synchronized (lock) {
BigDecimal balance = this.getBalance();
this.balance = balance.subtract(amount);
}
}
}
安全实现-使用 CAS
class DecimalAccountSafeCas implements DecimalAccount {
AtomicReference<BigDecimal> ref;
public DecimalAccountSafeCas(BigDecimal balance) {
ref = new AtomicReference<>(balance);
}
@Override
public BigDecimal getBalance() {
return ref.get();
}
@Override
public void withdraw(BigDecimal amount) {
while (true) {
BigDecimal prev = ref.get();
BigDecimal next = prev.subtract(amount);
if (ref.compareAndSet(prev, next)) {
break;
}
}
}
}
测试代码
DecimalAccount.demo(new DecimalAccountUnsafe(new BigDecimal("10000")));
DecimalAccount.demo(new DecimalAccountSafeLock(new BigDecimal("10000")));
DecimalAccount.demo(new DecimalAccountSafeCas(new BigDecimal("10000")));
运行结果
4310 cost: 425 ms
0 cost: 285 ms
0 cost: 274 ms
5.2.3 原子数组
测试代码
package com.yuanzi.java8.test;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.atomic.AtomicIntegerArray;
import java.util.function.BiConsumer;
import java.util.function.Consumer;
import java.util.function.Function;
import java.util.function.Supplier;
public class Test39 {
public static void main(String[] args) {
demo(
()->new int[10],
(array)->array.length,
(array, index) -> array[index]++,
array-> System.out.println(Arrays.toString(array))
);
demo(
()-> new AtomicIntegerArray(10),
(array) -> array.length(),
(array, index) -> array.getAndIncrement(index),
array -> System.out.println(array)
);
}
/**
参数1,提供数组、可以是线程不安全数组或线程安全数组
参数2,获取数组长度的方法
参数3,自增方法,回传 array, index
参数4,打印数组的方法
*/
// supplier 提供者 无中生有 ()->结果
// function 函数 一个参数一个结果 (参数)->结果 , BiFunction (参数1,参数2)->结果
// consumer 消费者 一个参数没结果 (参数)->void, BiConsumer (参数1,参数2)->
private static <T> void demo(
Supplier<T> arraySupplier,
Function<T, Integer> lengthFun,
BiConsumer<T, Integer> putConsumer,
Consumer<T> printConsumer ) {
List<Thread> ts = new ArrayList<>();
T array = arraySupplier.get();
int length = lengthFun.apply(array);
for (int i = 0; i < length; i++) {
// 每个线程对数组作 10000 次操作
ts.add(new Thread(() -> {
for (int j = 0; j < 10000; j++) {
putConsumer.accept(array, j%length);
}
}));
}
ts.forEach(t -> t.start()); // 启动所有线程
ts.forEach(t -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}); // 等所有线程结束
printConsumer.accept(array);
}
}
运行结果
[9864, 9862, 9859, 9868, 9869, 9862, 9863, 9866, 9867, 9865]
[10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000]
5.2.4 字段更新器
AtomicReferenceFieldUpdate//域 字段
AtomicIntegerFieldUpdaterAtomicLongFieldUpdater
利用字段更新器,可以针对对象的某个域( Field)进行原子操作,只能配合 volatile修饰的字段使用,否则
会出现异常
Exception in thread"main java. langIllegalArgumentException Must be volatile type
package com.yuanzi.java8.test;
import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;
@Slf4j(topic = "c.Test40")
public class Test40 {
public static void main(String[] args) {
Student stu = new Student();
//参数1, 要修改的类
//参数2, 要修改的字段的类型
//参数3, 要修改的属性名
AtomicReferenceFieldUpdater updater =
AtomicReferenceFieldUpdater.newUpdater(Student.class, String.class, "name");
System.out.println(updater.compareAndSet(stu, null, "张三"));
System.out.println(stu);
}
}
class Student {
//需要加上volatile修饰
volatile String name;
@Override
public String toString() {
return "Student{" +
"name='" + name + '\'' +
'}';
}
}
运行结果
true
Student{name='张三'}
5.2.5 原子累加器
累加器测试代码
package com.yuanzi.java8.test;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic.LongAdder;
import java.util.function.Consumer;
import java.util.function.Supplier;
public class Test41 {
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
demo(
() -> new AtomicLong(0),
(adder) -> adder.getAndIncrement()
);
}
for (int i = 0; i < 10; i++) {
demo(
() -> new LongAdder(),
adder -> adder.increment()
);
}
}
/*
() -> 结果 提供累加器对象
(参数) -> 执行累加操作
*/
private static <T> void demo(Supplier<T> adderSupplier, Consumer<T> action) {
T adder = adderSupplier.get();
List<Thread> ts = new ArrayList<>();
// 4 个线程,每人累加 50 万
for (int i = 0; i < 4; i++) {
ts.add(new Thread(() -> {
for (int j = 0; j < 500000; j++) {
action.accept(adder);
}
}));
}
long start = System.nanoTime();
ts.forEach(t -> t.start());
ts.forEach(t -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
long end = System.nanoTime();
System.out.println(adder + " cost:" + (end - start) / 1000_000);
}
}
运行结果
2000000 cost:28
2000000 cost:43
2000000 cost:38
2000000 cost:45
2000000 cost:37
2000000 cost:37
2000000 cost:22
2000000 cost:32
2000000 cost:17
2000000 cost:12
明显LongAdder比AtomicLong的性能更好
性能提升的原因很简单,就是在有竞争时,设置多个累加单元, Therad-0累加cel!oj,而 Thread-1累加 cel[1]….最后将结果汇总。这样它们在累加时操作的不同的Ce变量,因此减少了CAS重试失败,从而提 高性能。
5.3Atomic系列类使用分析
代码分析
构造函数
public class AtomicInteger extends Number implements java.io.Serializable {
private static final long serialVersionUID = 6214790243416807050L;
//Unsafe类提供底层的CAS机制
private static final Unsafe unsafe = Unsafe.getUnsafe();
//valueOffset是value值的内存地址值偏移值,这个值的作用是获取value在主内存中的值
private static final long valueOffset;
//类加载的时候获取valueOffset的值
static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}
//AtomicInteger具体的值存放在这个变量中,
//这个变量使用volatile修饰,具有可见性
private volatile int value;
public AtomicInteger(int initialValue) {
value = initialValue;
}
//默认为0
public AtomicInteger() {
}
}
get和set方法分析
//value使用volatile修饰,每次能拿到最新值
public final int get() {
return value;
}
//value使用volatile修饰,赋值操作具有原子性,所以这个操作也是线程安全的
//这个方法和compareAndSet方法的区别是:compareAndSet方法会判断预期值和当前值,而set方法不会做任何判断,直接更新
// set方法不会在意原始值是多少,而compareAndSet会确保主内存中的值和预期值相等才更新。
public final void set(int newValue) {
value = newValue;
}
//这个方法可能比较令人疑惑,我查了下unsafe的putOrderedInt方法,如下
/** Sets the value of the integer field at the specified offset in the
* supplied object to the given value. This is an ordered or lazy
* version of <code>putIntVolatile(Object,long,int)</code>, which
* doesn't guarantee the immediate visibility of the change to other
* threads. It is only really useful where the integer field is
* <code>volatile</code>, and is thus expected to change unexpectedly.
*/
//上面的意思大致是:putOrderedInt方法不保证可见性,只有在变量是volatile修饰时才有用,
//我们这边的value变量就是用volatile修饰的,所以我认为AtomicInteger的`set`方法和`lazySet`方法
//功能是一致的。
public final void lazySet(int newValue) {
unsafe.putOrderedInt(this, valueOffset, newValue);
}
//将value设置成给定值,并返回旧值
public final int getAndSet(int newValue) {
return unsafe.getAndSetInt(this, valueOffset, newValue);
}
//使用CAS机制更新
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
//使用CAS机制更新
public final boolean weakCompareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
//CAS加1,并且返回原始值
public final int getAndIncrement() {
return unsafe.getAndAddInt(this, valueOffset, 1);
}
//CAS减1,并且返回原始值
public final int getAndDecrement() {
return unsafe.getAndAddInt(this, valueOffset, -1);
}
//CAS加减delta值,并且返回原始值
public final int getAndAdd(int delta) {
return unsafe.getAndAddInt(this, valueOffset, delta);
}
//CAS加1,并且返回最新值
public final int incrementAndGet() {
return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
}
//CAS减1,并且返回最新值
public final int decrementAndGet() {
return unsafe.getAndAddInt(this, valueOffset, -1) - 1;
}
//CAS加减delta值,并且返回最新值
public final int addAndGet(int delta) {
return unsafe.getAndAddInt(this, valueOffset, delta) + delta;
}
策略更新
下面几个方法个人觉得不是很有用,和上面的区别就是更新的值不是穿进去的,而是通过IntUnaryOperator和IntBinaryOperator接口算出来的。
public final int getAndUpdate(IntUnaryOperator updateFunction) {
int prev, next;
do {
prev = get();
next = updateFunction.applyAsInt(prev);
} while (!compareAndSet(prev, next));
return prev;
}
public final int updateAndGet(IntUnaryOperator updateFunction) {
int prev, next;
do {
prev = get();
next = updateFunction.applyAsInt(prev);
} while (!compareAndSet(prev, next));
return next;
}
public final int getAndAccumulate(int x, IntBinaryOperator accumulatorFunction) {
int prev, next;
do {
prev = get();
next = accumulatorFunction.applyAsInt(prev, x);
} while (!compareAndSet(prev, next));
return prev;
}
public final int accumulateAndGet(int x,IntBinaryOperator accumulatorFunction) {
int prev, next;
do {
prev = get();
next = accumulatorFunction.applyAsInt(prev, x);
} while (!compareAndSet(prev, next));
return next;
}
