1. 概况
- FIFO
- 初始化时候指定了链表长度,默认为 Integer.MAX_VALUE,而节点是插入时才创建
2. 类定义
继承父类与实现接口与 ArrayBlockingQueue 一样。
public class LinkedBlockingQueue<E> extends AbstractQueue<E>
implements BlockingQueue<E>, java.io.Serializable {
}
3. 成员变量
与 ArrayBlockingQueue 不一样的地方:
- 使用两个 Lock 控制入队和出队;ArrayBlockingQueue 只有一个 LOCK 控制并发访问
- 使用 AtomicInteger 记录当前链表的元素个数;ArrayBlockingQueue 则是使用一个基本类型的变量。
/** 容量大小,默认为 Integer.MAX_VALUE */
private final int capacity;
/** 链表中元素个数 */
private final AtomicInteger count = new AtomicInteger();
/**
* 链表的头节点,这个头节点是空节点,即 head.item = null
*/
transient Node<E> head;
/**
* 链表的尾节点,也是一个空节点,即 last.item = null
*/
private transient Node<E> last;
/** 出队操作的锁 */
private final ReentrantLock takeLock = new ReentrantLock();
/** 条件队列,用于通知出队相关方法,告知队列中有元素了 */
private final Condition notEmpty = takeLock.newCondition();
/** 入队操作需要获取的锁 */
private final ReentrantLock putLock = new ReentrantLock();
/** 条件队列,用于通知入队相关方法,告知队列现在没满 */
private final Condition notFull = putLock.newCondition();
4. 构造方法
public LinkedBlockingQueue() {
this(Integer.MAX_VALUE);
}
public LinkedBlockingQueue(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
last = head = new Node<E>(null); // 初始化头节点和尾节点
}
/**
* 将集合中的元素放到链表队列中
*/
public LinkedBlockingQueue(Collection<? extends E> c) {
this(Integer.MAX_VALUE);
final ReentrantLock putLock = this.putLock;
putLock.lock(); // Never contended, but necessary for visibility
try {
int n = 0;
for (E e : c) {
if (e == null)
throw new NullPointerException();
if (n == capacity)
throw new IllegalStateException("Queue full");
enqueue(new Node<E>(e)); // 将元素放到链表尾部
++n;
}
count.set(n);
} finally {
putLock.unlock();
}
}
// 相当于 last.next = node; last = last.next
private void enqueue(Node<E> node) {
// assert putLock.isHeldByCurrentThread();
// assert last.next == null;
last = last.next = node;
}
5. 成员方法
5.1 入队方法
5.1.1 put
- 使用 put 锁控制其它线程进行相关入队操作
- 局部变量 c 用于唤醒正在等待的出队方法
public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
int c = -1; // 用于判断是否添加成功,负数表示没有添加成功
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
// 若容量满了,入队进行等待
while (count.get() == capacity) {
notFull.await();
}
// 入队操作
enqueue(node);
// getAndIncrement 方法的返回是自增的元素,所以 c 被赋值添加元素之前的链表节点个数;并且 count++
c = count.getAndIncrement();
// 添加一个元素还没有满,通知等待队列,还可以进行入队操作
if (c + 1 < capacity)
notFull.signal();
} finally {
putLock.unlock();
}
// 若入队前队列size=0,此时队列元素个数为1,那么就唤醒正在等待出队的方法
if (c == 0)
signalNotEmpty();
}
5.1.2 offer
- 与 put 方法类似,都是对 putLock 进行加锁控制
- 带超时时间的 offer 方法增加了阻塞等待的功能
public boolean offer(E e) {
if (e == null) throw new NullPointerException();
final AtomicInteger count = this.count;
if (count.get() == capacity) // 容量满,添加失败
return false;
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
if (count.get() < capacity) {
enqueue(node);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
}
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
return c >= 0;
}
public boolean offer(E e, long timeout, TimeUnit unit)
throws InterruptedException {
if (e == null) throw new NullPointerException();
long nanos = unit.toNanos(timeout);
int c = -1;
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
while (count.get() == capacity) {
if (nanos <= 0)
return false;
nanos = notFull.awaitNanos(nanos);
}
enqueue(new Node<E>(e));
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
return true;
}
5.2 出队方法
5.2.1 poll
public E poll() {
final AtomicInteger count = this.count;
if (count.get() == 0)
return null;
E x = null;
int c = -1;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
if (count.get() > 0) {
x = dequeue(); // 出队操作并返回头节点
c = count.getAndDecrement(); // 先返回再减 1
if (c > 1)
notEmpty.signal(); // 通知其它正在等待的 出队方法
}
} finally {
takeLock.unlock();
}
if (c == capacity) // 出队之前队列是满的,现在已经出队了,那么通知其它正在等待的 入队方法
signalNotFull();
return x;
}
// 仅在同步方法块中调用
private E dequeue() {
// assert takeLock.isHeldByCurrentThread();
// assert head.item == null;
Node<E> h = head;
Node<E> first = h.next;
h.next = h; // help GC
head = first;
E x = first.item;
first.item = null;
return x;
}
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
E x = null;
int c = -1;
long nanos = unit.toNanos(timeout);
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
if (nanos <= 0)
return null;
nanos = notEmpty.awaitNanos(nanos);
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
5.2.2 peek
public E peek() {
if (count.get() == 0)
return null;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
Node<E> first = head.next; // 返回头节点的下一个
if (first == null)
return null;
else
return first.item;
} finally {
takeLock.unlock();
}
}
5.2.3 take
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) { // 队列为空,进行等待
notEmpty.await();
}
x = dequeue(); // 出队
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull(); // 通知正在等待 入队的线程,可以放入元素了
return x;
}
删除元素
从链表中删除指定元素,删除成功返回 true
public boolean remove(Object o) {
if (o == null) return false;
fullyLock(); // 两把锁都获取到再删除
try {
for (Node<E> trail = head, p = trail.next;
p != null;
trail = p, p = p.next) {
if (o.equals(p.item)) {
unlink(p, trail);
return true;
}
}
return false;
} finally {
fullyUnlock();
}
}
// 将节点 P 从链表中移除,trail 是 p 节点的前一个节点
void unlink(Node<E> p, Node<E> trail) {
// assert isFullyLocked();
// p.next is not changed, to allow iterators that are
// traversing p to maintain their weak-consistency guarantee.
p.item = null;
trail.next = p.next;
if (last == p)
last = trail; // 将 last 节点置为 p 的前置节点
if (count.getAndDecrement() == capacity)
notFull.signal();
}
6. 内部类
7. 思考
- LinkedBlockingQueue 为什么使用两个锁,而 ArrayBlockingQueue 只用一个锁?
首先,使用两个锁的吞吐量肯定比一个锁的大,因为入队和出队并不影响;ArrayBlockingQueue 之所以用一个锁,只能推测了,就是 数组实现出队,入队比较简单,再去用锁控制显得多余?
- 入队操作的时候,如果还没满,方法内容调用的是 notFull 条件队列,通知线程还可以添加;而 ArrayBlockingQueue 添加元素之后调用的是 notEmpty 条件队列,这里为何不一样?
因为 ArrayBlockingQueue 只有一个锁,如果添加元素之后再 notFull 通知正在等待的入队线程,消费线程可能很久以后才会拿到锁。
- 入队方法结尾,c 为什么不用加锁通知? 为什么是 等于 0 或者 等于 captive 而不是 大于 0
c == 0 时,表明入队方法前队列为空,此时很有可能有消费线程在等待,所以得使用 signalNotEmpty 通知正在等待的消费线程
c > 0 时,队列是有数据的,此时消费线程可能都在消费中,此时通知的意义并不大。