类加载机制
Class 文件结构
魔数
Class 文件的头 4 个字节称为魔数,用来表示这个 Class 文件的类型。
Class 文件的魔数是用 16 进制表示的“CAFE BABE”
版本信息
紧接着魔数的 4 个字节是版本信息,5-6 字节表示次版本号,7-8 字节表示主版本号,它们表示当前 Class 文件中使用的是哪个版本的 JDK。
高版本的 JDK 能向下兼容以前版本的 Class 文件,但不能运行以后版本的 Class 文件,即使文件格式并未发生任何变化,虚拟机也必需拒绝执行超过其版本号的 Class 文件。
常量池
常量池中存放两种类型的常量:
- 字面值常量字面值常量就是我们在程序中定义的字符串、被 final 修饰的值。
符号引用符号引用就是我们定义的各种名字:类和接口的全限定名、字段的名字和描述符、方法的名字和描述符。
常量池的特点常量池中常量数量不固定,因此常量池开头放置一个 u2 类型的无符号数,用来存储当前常量池的容量。
- 常量池的每一项常量都是一个表,表开始的第一位是一个 u1 类型的标志位(tag),代表当前这个常量属于哪种常量类型。
访问标志
在常量池结束之后,紧接着的两个字节代表访问标志,这个标志用于识别一些类或者接口层次的访问信息,包括:这个 Class 是类还是接口;是否定义为 public 类型;是否被 abstract/final 修饰。类索引、父类索引、接口索引集合
类索引和父类索引都是一个 u2 类型的数据,而接口索引集合是一组 u2 类型的数据的集合,Class 文件中由这三项数据来确定类的继承关系。类索引用于确定这个类的全限定名,父类索引用于确定这个类的父类的全限定名。字段表集合
字段表集合存储本类涉及到的成员变量,包括实例变量和类变量,但不包括方法中的局部变量。方法表集合
方法表结构与属性表类似。
volatile 关键字 和 transient 关键字不能修饰方法,所以方法表的访问标志中没有 ACC_VOLATILE 和 ACC_TRANSIENT 标志。
方法表的属性表集合中有一张 Code 属性表,用于存储当前方法经编译器编译后的字节码指令。
属性表集合
每个属性对应一张属性表,属性表的结构如下:
类型 | 名称 | 数量 |
---|---|---|
u2 | attribute_name_index | 1 |
u4 | attribute_length | 1 |
u1 | info | attribute_length |
类加载时机
加载
- 通过类的全限定名获取该类的二进制字节流。
- 将二进制字节流所代表的静态结构转化为方法区的运行时数据结构。
在内存中创建一个代表该类的 java.lang.Class 对象,作为方法区这个类的各种数据的访问入口。
类加载器
启动类加载器(Bootstrap ClassLoader) :负责加载 JAVA_HOME\lib 目录中的,或通过 -Xbootclasspath 参数指定路径中的,且被虚拟机认可(按文件名识别,如rt.jar)的类。
- 扩展类加载器(Extension ClassLoader):负责加载 JAVA_HOME\lib\ext 目录中的,或通过java.ext.dirs系统变量指定路径中的类库。
- 应用程序类加载器(Application ClassLoader):负责加载用户路径(classpath)上的类库。 JVM通过双亲委派模型进行类的加载,当然我们也可以通过继承java.lang.ClassLoader实现自定义的类加载器。
JDK 1.9 之后,Platform Class Loader 替代了 Extension Class Loader,并且 启动类加载器、平台类加载器、应用程序类加载器全都继承于 jdk.internal.loader.BuiltinClassLoader。
双亲委派机制
如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的类加载器都是如此,因此所有的加载请求最终都应该传送到顶层的启动类加载器中,只有当父加载器反馈自己无法完成这个加载请求(找不到所需的类)时,子加载器才会尝试自己去加载。
如果没有使用双亲委派模型,由各个类加载器自行去加载的话,如果用户自己编写了一个称为 java.lang.Object 的类,并放在 classpath 下,那么系统将会出现多个不同的 Object 类,Java 类型体系中最基础的行为也就无法保证。
连接
验证
验证阶段确保 Class 文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。
准备
静态字段分配内存,静态字段默认零值(如0、0L、null、false等)注意:public static final int v = 8080; 如果类变量加上 final,那么此时值将是赋值的值。final 表示不可变,所以在准备阶段就赋指定值。
解析
符号引用解析,将常量池内的符号引用替换为直接引用的过程
- 符号引用,以一组符号来描述所引用的目标,符号引用可以是任何形式的字面量,符号引用与虚拟机实现的内存布局无关,引用的目标并不一定已经在内存中。
直接引用,直接指向目标的指针、相对偏移量或是一个能间接定位到目标的句柄。直接引用是与虚拟机实现的内存布局相关的,同一个符号引用在不同的虚拟机实例上翻译出来的直接引用一般都不相同,如果有了直接引用,那引用的目标必定已经在内存中存在。
初始化
执行类构造器(类初始化)
() 方法的过程,静态字段赋值 类初始化方法,编译器会按照其出现顺序,收集类变量的赋值语句、静态代码块,最终组成类初始化方法。类初始化方法一般在类初始化的时候执行。
对象初始化方法(类的实例化),编译器会按照其出现顺序,收集成员变量的赋值语句、普通代码块,最后收集构造函数的代码,最终组成对象初始化方法。对象初始化方法一般在实例化类对象的时候执行。
初始化时机
在遇到 new、putstatic、getstatic、invokestatic 字节码指令时,如果类尚未初始化,则需要先触发其初始化。
- 对类进行反射调用时,如果类还没有初始化,则需要先触发其初始化。
- 初始化一个类时,如果其父类还没有初始化,则需要先初始化父类。
- 虚拟机启动时,用于需要指定一个包含 main() 方法的主类,虚拟机会先初始化这个主类。
当使用 JDK 1.7 的动态语言支持时,如果一个 java.lang.invoke.MethodHandle 实例最后的解析结果为 REF_getStatic、REF_putStatic、REF_invokeStatic 的方法句柄,并且这个方法句柄所对应的类还没初始化,则需要先触发其初始化。
不会类初始化场景
通过子类引用父类的静态字段,只会触发父类的初始化,而不会触发子类的初始化。
- 定义对象数组,不会触发该类的初始化。
- 常量在编译期间会存入调用类的常量池中,本质上并没有直接引用定义常量的类,不会触发定义常量所在的类。
- 通过类名获取Class对象,不会触发类的初始化。
- 通过Class.forName加载指定类时,如果指定参数initialize为false时,也不会触发类初始化,其实这个参数是告诉虚拟机,是否要对类进行初始化。
- 通过ClassLoader默认的loadClass方法,也不会触发初始化动作
对象初始化顺序
创建一个对象常常需要经历如下几个过程:父类的类构造器() -> 子类的类构造器() -> 父类的成员变量和实例代码块 -> 父类的构造函数 -> 子类的成员变量和实例代码块 -> 子类的构造函数。
使用
卸载
两道面试题,带你解析Java类加载机制 https://www.cnblogs.com/chanshuyi/p/the_java_class_load_mechamism.html
执行顺序:
- 确定类变量的初始值。在类加载的准备阶段,JVM 会为类变量初始化零值,这时候类变量会有一个初始的零值。如果是被 final 修饰的类变量,则直接会被初始成用户想要的值。
- 初始化入口方法。当进入类加载的初始化阶段后,JVM 会寻找整个 main 方法入口,从而初始化 main 方法所在的整个类。当需要对一个类进行初始化时,会首先初始化类构造器(),之后初始化对象构造器()。
- 初始化类构造器。JVM 会按顺序收集类变量的赋值语句、静态代码块,最终组成类构造器由 JVM 执行。
- 初始化对象构造器。JVM 会按照收集成员变量的赋值语句、普通代码块,最后收集构造方法,将它们组成对象构造器,最终由 JVM 执行。
运行时数据区
堆
存放对象的地方;线程共享;逻辑上连续,物理上可不连续新生对象内存分配方式
对象所需内存的大小在类加载完成后便可完全确定,接下来从堆中划分一块对应大小的内存空间给新的对象。分配堆中内存有两种方式:
如果 Java 堆中内存绝对规整(说明采用的是“复制算法”或“标记整理法”),空闲内存和已使用内存中间放着一个指针作为分界点指示器,那么分配内存时只需要把指针向空闲内存挪动一段与对象大小一样的距离,这种分配方式称为“指针碰撞”。
指针碰撞
空闲列表
如果 Java 堆中内存并不规整,已使用的内存和空闲内存交错(说明采用的是标记-清除法,有碎片),此时没法简单进行指针碰撞, VM 必须维护一个列表,记录其中哪些内存块空闲可用。分配之时从空闲列表中找到一块足够大的内存空间划分给对象实例。这种方式称为“空闲列表”。
栈上分配
TLAB 的全称是 Thread Local Allocation Buffer,即线程本地分配缓存区,是属于 Eden 区的,这是一个线程专用的内存分配区域,线程私有,默认开启的(当然也不是绝对的,也要看哪种类型的虚拟机);
所以用 TLAB 来避免多线程冲突,在给对象分配内存时,每个线程使用自己的 TLAB,这样可以使得线程同步,提高了对象分配的效率;当然并不是所有的对象都可以在 TLAB 中分配内存成功,如果失败了就会使用加锁的机制来保持操作的原子性
-XX:+UseTLAB 使用 TLAB,-XX:+TLABSize 设置 TLAB 大小
对象内存布局
对象头
- Mark Word
- HashCode
- GC 分代年龄
- 锁状态标志
- 线程持有的锁
- 偏向时间戳
- 类型指针:确定对象属于哪个类的实例
实例数据
实例数据部分就是成员变量的值,其中包括父类成员变量和本类成员变量。对齐填充
占位符作用,用于确保对象的总长度为 8 字节的整数倍。
HotSpot VM 的自动内存管理系统要求对象的大小必须是 8 字节的整数倍。而对象头部分正好是 8 字节的倍数(1 倍或 2 倍),因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。
对象的访问方式
所有对象的存储空间都是在堆中分配的,但是这个对象的引用却是在堆栈中分配的。也就是说在建立一个对象时两个地方都分配内存,在堆中分配的内存实际建立这个对象,而在堆栈中分配的内存只是一个指向这个堆对象的指针(引用)而已。 那么根据引用存放的地址类型的不同,对象有不同的访问方式。
句柄
堆中需要有一块叫做“句柄池”的内存空间,句柄中包含了对象实例数据与类型数据各自的具体地址信息。
引用类型的变量存放的是该对象的句柄地址(reference)。访问对象时,首先需要通过引用类型的变量找到该对象的句柄,然后根据句柄中对象的地址找到对象。
直接指针
引用类型的变量直接存放对象的地址,从而不需要句柄池,通过引用能够直接访问对象。但对象所在的内存空间需要额外的策略存储对象所属的类信息的地址。
常量池
- Class 文件常量池,class 文件中有定义,包括字面量和符号引用
- 字面量:比较接近于 Java 层面的常量概念,如文本字符串、被声明为 final 的常量值等
- 符号引用:
- 类和接口的全限定名(即带有包名的 Class 名,如:org.lxh.test.TestClass)
- 字段的名称和描述符(private、static 等描述符)
- 方法的名称和描述符(private、static 等描述符)
- 运行时常量池,JDK1.7 及之后版本的 JVM 已经将运行时常量池从方法区中移了出来,在 Java 堆(Heap)中开辟了一块区域存放运行时常量池。同时在 jdk 1.8中移除整个永久代,取而代之的是一个叫元空间(Metaspace)的区域
- 全局字符串常量池
-
方法区
方法区是一个接口概念,是 Java 虚拟机定义的一个规范;而永久代、元空间则被认为是方法区这个规范的实现,并且永久代 HotSpot 虚拟机才有的概念,其它虚拟机没有。
JDK 1.7 时,永久代包含类的元信息、静态变量、常量池(Constant Pool Table);
JDK 1.8 开始元空间(元空间不属于堆,在机器的本地内存中)存储类的元信息。静态变量、常量池并入堆中。
方法区存放以下信息: 已经被虚拟机加载的类信息
- 常量
- 静态变量
- 即时编译器编译后的代码
运行时常量池
方法区中存放:类信息、常量、静态变量、即时编译器编译后的代码。常量就存放在运行时常量池中。
当类被 Java 虚拟机加载后, .class 文件中的常量就存放在方法区的运行时常量池中。而且在运行期间,可以向常量池中添加新的常量。如 String 类的 intern() 方法就能在运行期间向常量池中添加字符串常量。Java 虚拟机栈
Java 虚拟机栈是描述 Java 方法运行过程的内存模型。虚拟机栈有大小,如果栈的深度大于 JVM 所允许的范围,会抛出 StackOverflowError;如果申请不到额外空间,会抛出 OutOfMemoryError,这两种错误如果要捕获,需使用 Throwable 进行捕获。
局部变量表
定义为一个数字数组,主要用于存储方法参数、定义在方法体内部的局部变量,数据类型包括各类基本数据类型,对象引用,以及 return address 类型。
局部变量表容量大小是在编译期确定下来的。最基本的存储单元是 slot,32 位占用一个 slot,64 位类型(long 和 double)占用两个 slot。操作数栈
操作数栈的最大深度也是在编译的时候就确定了,当一个方法开始执行时,它的操作栈是空的,在方法的执行过程中,会有各种字节码指令(比如:加操作、赋值元算等)向操作栈中写入和提取内容,也就是入栈和出栈操作。
Java 虚拟机的解释执行引擎称为“基于栈的执行引擎”,其中所指的“栈”就是操作数栈。
基于栈的指令集最主要的优点是可移植性强,主要的缺点是执行速度相对会慢些;而由于寄存器由硬件直接提供,所以基于寄存器指令集最主要的优点是执行速度快,主要的缺点是可移植性差。
栈顶缓存技术:由于操作数是存储在内存中,频繁的进行内存读写操作影响执行速度,将栈顶元素全部缓存到物理 CPU 的寄存器中,以此降低对内存的读写次数,提升执行引擎的执行效率。
方法的调用
静态链接:当一个字节码文件被装载进 JVM 内部时,如果被调用的目标方法在编译期可知,且运行时期间保持不变,这种情况下降调用方的符号引用转为直接引用的过程称为静态链接。
- 动态链接:如果被调用的方法无法再编译期被确定下来,只能在运行期将调用的方法的符号引用转为直接引用,这种引用转换过程具备动态性,因此被称为动态链接。
- 方法绑定
- 早期绑定:被调用的目标方法如果再编译期可知,且运行期保持不变。
- 晚期绑定:被调用的方法在编译期无法被确定,只能够在程序运行期根据实际的类型绑定相关的方法。
- 非虚方法:如果方法在编译期就确定了具体的调用版本,则这个版本在运行时是不可变的。这样的方法称为非虚方法静态方法,私有方法,final 方法,实例构造器,父类方法都是非虚方法,除了这些以外都是虚方法。
- 虚方法表:面向对象的编程中,会很频繁的使用动态分配,如果每次动态分配的过程都要重新在类的方法元数据中搜索合适的目标的话,就可能影响到执行效率,因此为了提高性能,JVM 采用在类的方法区建立一个虚方法表,使用索引表来代替查找。
- 每个类都有一个虚方法表,表中存放着各个方法的实际入口。
- 虚方法表会在类加载的链接阶段被创建,并开始初始化,类的变量初始值准备完成之后,JVM 会把该类的方法也初始化完毕。
- 方法重写的本质
- 找到操作数栈顶的第一个元素所执行的对象的实际类型,记做 C。如果在类型 C 中找到与常量池中描述符和简单名称都相符的方法,则进行访问权限校验。
- 如果通过则返回这个方法的直接引用,查找过程结束;如果不通过,则返回 java.lang.IllegalAccessError 异常。
- 否则,按照继承关系从下往上依次对 C 的各个父类进行上一步的搜索和验证过程。
- 如果始终没有找到合适的方法,则抛出 java.lang.AbstractMethodError 异常。
Java 中任何一个普通方法都具备虚函数的特征(运行期确认,具备晚期绑定的特点),C++ 中则使用关键字 virtual 来显式定义。如果在 Java 程序中,不希望某个方法拥有虚函数的特征,则可以使用关键字 final 来标记这个方法。
方法出口信息
一般来说,方法正常退出时,调用者的 PC 计数器的值就可以作为返回地址,栈帧中很可能保存了这个计数器值,而方法异常退出时,返回地址是要通过异常处理器来确定的,栈帧中一般不会保存这部分信息。
程序计数器
PC,Program Counter Register,唯一一个无 OOM 的区域。程序计数器是一块较小的内存空间,是当前线程正在执行的那条字节码指令的地址。若当前线程正在执行的是一个本地方法,那么此时程序计数器为Undefined。
本地方法栈
「当 Java 虚拟机使用其他语言(例如 C 语言)来实现指令集解释器时,也会使用到本地方法栈。如果 Java 虚拟机不支持 natvie 方法,并且自己也不依赖传统栈的话,可以无需支持本地方法栈。」
垃圾回收
如何确定垃圾
引用计数:在对象头维护着一个 counter 计数器,对象被引用一次则计数器 +1;若引用失效则计数器 -1。当计数器为 0 时,就认为该对象无效了。存在相互引用的问题。
根可达:所有和 GC Roots 直接或间接关联的对象都是有效对象,和 GC Roots 没有关联的对象就是无效对象。
GC Roots 是指:
- Java 虚拟机栈(栈帧中的本地变量表)中引用的对象
- 本地方法栈中引用的对象
- 方法区中常量引用的对象
- 方法区中类静态属性引用的对象
GC Roots 并不包括堆中对象所引用的对象,这样就不会有循环引用的问题。
引用类型
判定对象是否存活与“引用”有关。在 JDK 1.2 以前,Java 中的引用定义很传统,一个对象只有被引用或者没有被引用两种状态,我们希望能描述这一类对象:当内存空间还足够时,则保留在内存中;如果内存空间在进行垃圾收集后还是非常紧张,则可以抛弃这些对象。很多系统的缓存功能都符合这样的应用场景。
在 JDK 1.2 之后,Java 对引用的概念进行了扩充,将引用分为了以下四种。不同的引用类型,主要体现的是对象不同的可达性状态reachable和垃圾收集的影响。
强引用(Strong Reference)
类似 “Object obj = new Object()” 这类的引用,就是强引用,只要强引用存在,垃圾收集器永远不会回收被引用的对象。但是,如果我们错误地保持了强引用,比如:赋值给了 static 变量,那么对象在很长一段时间内不会被回收,会产生内存泄漏。
软引用(Soft Reference)
软引用是一种相对强引用弱化一些的引用,可以让对象豁免一些垃圾收集,只有当 JVM 认为内存不足时,才会去试图回收软引用指向的对象。JVM 会确保在抛出 OutOfMemoryError 之前,清理软引用指向的对象。软引用通常用来实现内存敏感的缓存,如果还有空闲内存,就可以暂时保留缓存,当内存不足时清理掉,这样就保证了使用缓存的同时,不会耗尽内存。
弱引用(Weak Reference)
弱引用的强度比软引用更弱一些。当 JVM 进行垃圾回收时,无论内存是否充足,都会回收只被弱引用关联的对象。
虚引用(Phantom Reference)
虚引用也称幽灵引用或者幻影引用,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响。它仅仅是提供了一种确保对象被 finalize 以后,做某些事情的机制,比如,通常用来做所谓的 Post-Mortem 清理机制。
垃圾回收算法
标记-清除
标记的过程是:遍历所有的 GC Roots,然后将所有 GC Roots 可达的对象标记为存活的对象。
清除的过程将遍历堆中所有的对象,将没有标记的对象全部清除掉。与此同时,清除那些被标记过的对象的标记,以便下次的垃圾回收。
产生内存碎片
标记-复制
将可用内存按容量划分为大小相等的两块,每次只使用其中的一块;存在一定空间浪费
标记-整理(老年代)
标记:它的第一个阶段与标记-清除算法是一模一样的,均是遍历 GC Roots,然后将存活的对象标记。
整理:移动所有存活的对象,且按照内存地址次序依次排列,然后将末端内存地址以后的内存全部回收。因此,第二阶段才称为整理阶段。
这是一种老年代的垃圾收集算法。老年代的对象一般寿命比较长,因此每次垃圾回收会有大量对象存活,如果采用复制算法,每次需要复制大量存活的对象,效率很低。
分代收集
根据对象存活周期的不同,将内存划分为几块,针对各个年代的特点采用最适当的收集算法。
简单而高效,单线程,是 Java 虚拟机运行在 Client 模式下默认的新生代垃圾收集器,新生代采用复制算法,老年代采用标记-整理算法。
- ParNew
ParNew 追求“低停顿时间”,与 Serial 唯一区别就是使用了多线程进行垃圾收集,在多 CPU 环境下性能比 Serial 会有一定程度的提升;但线程切换需要额外的开销,因此在单 CPU 环境中表现不如 Serial。
- Parallel Scavenge 垃圾收集器(多线程)
Parallel Scavenge:追求 CPU 吞吐量,能够在较短时间内完成指定任务,因此适合没有交互的后台计算。
ParNew:追求降低用户停顿时间,适合交互式应用。
吞吐量 = 运行用户代码时间 / (运行用户代码时间 + 垃圾收集时间)
- 通过参数 -XX:GCTimeRadio 设置垃圾回收时间占总 CPU 时间的百分比。
- 通过参数 -XX:MaxGCPauseMillis 设置垃圾处理过程最久停顿时间。
通过命令 -XX:+UseAdaptiveSizePolicy 开启自适应策略。我们只要设置好堆的大小和 MaxGCPauseMillis 或 GCTimeRadio,收集器会自动调整新生代的大小、Eden 和 Survivor 的比例、对象进入老年代的年龄,以最大程度上接近我们设置的 MaxGCPauseMillis 或 GCTimeRadio。
老年代
Seial Old
Serial Old 收集器是 Serial 的老年代版本,都是单线程收集器,只启用一条 GC 线程,都适合客户端应用。它们唯一的区别就是:Serial Old 工作在老年代,使用“标记-整理”算法;Serial 工作在新生代,使用“复制”算法
- CMS
CMS(Concurrent Mark Sweep,并发标记清除)收集器是以获取最短回收停顿时间为目标的收集器(追求低停顿),它在垃圾收集时使得用户线程和 GC 线程并发执行,因此在垃圾收集过程中用户也不会感到明显的卡顿。
- 初始标记:Stop The World,仅使用一条初始标记线程对所有与 GC Roots 直接关联的对象进行标记。
- 并发标记:使用多条标记线程,与用户线程并发执行。此过程进行可达性分析,标记出所有废弃对象。速度很慢。
- 重新标记:Stop The World,使用多条标记线程并发执行,将刚才并发标记过程中新出现的废弃对象标记出来。
- 并发清除:只使用一条 GC 线程,与用户线程并发执行,清除刚才标记的对象。这个过程非常耗时。
CMS 的缺点:
- 吞吐量低,对 CPU 资源比较敏感
- 无法处理浮动垃圾
- 使用“标记-清除”算法产生碎片空间,导致频繁 Full GC
对于产生碎片空间的问题,可以通过开启 -XX:+UseCMSCompactAtFullCollection,在每次 Full GC 完成后都会进行一次内存压缩整理,将零散在各处的对象整理到一块。设置参数 -XX:CMSFullGCsBeforeCompaction 告诉 CMS,经过了 N 次 Full GC 之后再进行一次内存整理。
G1
Region之间是复制算法,但整体上实际可看作是标记-整理(Mark-Compact)算法,特点:
- 并行与并发:G1 能充分利用 CPU、多核环境下的硬件优势,使用多个 CPU(CPU或者CPU核心)来缩短 Stop-The-World 停顿时间。部分其他收集器原本需要停顿 Java 线程执行的 GC 动作,G1 收集器仍然可以通过并发的方式让 java 程序继续执行。
- 分代收集:虽然 G1 可以不需要其他收集器配合就能独立管理整个GC堆,但是还是保留了分代的概念。
- 空间整合:与 CMS 的“标记–清理”算法不同,G1 从整体来看是基于“标记整理”算法实现的收集器;从局部上来看是基于“复制”算法实现的。
- 可预测的停顿:这是 G1 相对于 CMS 的另一个大优势,降低停顿时间是 G1 和 CMS 共同的关注点,但 G1 除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为 M 毫秒的时间片段内。
G1 收集器的工作过程分为以下几个步骤:
- 初始标记:Stop The World,仅使用一条初始标记线程对所有与 GC Roots 直接关联的对象进行标记。
- 并发标记:使用一条标记线程与用户线程并发执行。此过程进行可达性分析,速度很慢。
- 最终标记:Stop The World,使用多条标记线程并发执行。
筛选回收:回收废弃对象,此时也要 Stop The World,并使用多条筛选回收线程并发执行。
内存分配与回收策略
优先 Eden 分配
- 大对象直接进入老年代
- 长期存活的对象进入老年代
-
JVM 监控
jps 虚拟机进程状况
- jstat 虚拟机统计信息监视工具
- jinfo 输出 Java 配置信息工具
- jmap Java 内存映像工具
- jhat 虚拟机堆转储快照分析工具 与 jmap 配合
- jstatck 堆栈跟踪工具
- jconsole
-
JVM 调优
Sun JDK监控和故障处理命令有jps jstat jmap jhat jstack jinfo
• jps,JVM Process Status Tool,显示指定系统内所有的HotSpot虚拟机进程。
• jstat,JVM statistics Monitoring是用于监视虚拟机运行时状态信息的命令,它可以显示出虚拟机进程中的类装载、内存、垃圾收集、JIT编译等运行数据。
• jmap,JVM Memory Map命令用于生成heap dump文件
• jhat,JVM Heap Analysis Tool命令是与jmap搭配使用,用来分析jmap生成的dump,jhat内置了一个微型的HTTP/HTML服务器,生成dump的分析结果后,可以在浏览器中查看
• jstack,用于生成java虚拟机当前时刻的线程快照。
• jinfo,JVM Configuration info 这个命令作用是实时查看和调整虚拟机运行参数。启动参数
-XX:+HeapDumpOnOutOf-MemoryError 在出现内存溢出异常的时候Dump出当前的内存堆转储快照
- -Xss 栈容量
- -XX:MaxMetaspaceSize ·-XX:MetaspaceSize 字节为单位
- -XX:MaxDirectMemorySize参数来指定,如果不 去指定,则默认与Java堆最大值(由-Xmx指定)一致
- 内存泄漏
- -Xms / -Xmx — 堆的初始大小 / 堆的最大大小
-Xmn — 堆中年轻代的大小
-XX:-DisableExplicitGC — 让System.gc()不产生任何作用
-XX:+PrintGCDetails — 打印GC的细节
-XX:+PrintGCDateStamps — 打印GC操作的时间戳
-XX:NewSize / XX:MaxNewSize — 设置新生代大小/新生代最大大小
-XX:NewRatio — 可以设置老生代和新生代的比例
-XX:PrintTenuringDistribution — 设置每次新生代GC后输出幸存者乐园中对象年龄的分布
-XX:InitialTenuringThreshold / -XX:MaxTenuringThreshold:设置老年代阀值的初始值和最大值
-XX:TargetSurvivorRatio:设置幸存区的目标使用率