一、数据标准化
rm(list = ls())options(stringsAsFactors = F)library(stringr)## ====================1.读取数据# 读取raw count表达矩阵rawcount <- read.table("data/raw_counts.txt",row.names = 1,sep = "\t", header = T)colnames(rawcount)# 查看表达谱rawcount[1:4,1:4]# 去除前的基因表达矩阵情况dim(rawcount)# 获取分组信息group <- read.table("data/filereport_read_run_PRJNA229998_tsv.txt",header = T,sep = "\t", quote = "\"")colnames(group)# 提取表达矩阵对应的样本表型信息group <- group[match(colnames(rawcount), group$run_accession),c("run_accession","sample_title")]group# 差异分析方案为:Dex vs untreatedgroup$sample_title <- str_split_fixed(group$sample_title,pattern = "_", n=2)[,2]groupwrite.table(group,file = "data/group.txt",row.names = F,sep = "\t",quote = F)## =================== 2.表达矩阵预处理# 过滤低表达基因keep <- rowSums(rawcount>0) >= floor(0.75*ncol(rawcount))table(keep)filter_count <- rawcount[keep,]filter_count[1:4,1:4]dim(filter_count)# 加载edgeR包计算counts per millio(cpm) 表达矩阵library(edgeR)express_cpm <- cpm(filter_count)express_cpm[1:6,1:6]# 保存表达矩阵和分组结果save(filter_count, express_cpm, group, file = "data/Step01-airwayData.Rdata")
二、异常样本与重复性检测
rm(list = ls())options(stringsAsFactors = F)# 加载包,设置绘图参数library(ggplot2)library(ggsci)mythe <- theme_bw() + theme(panel.grid.major=element_blank(),panel.grid.minor=element_blank())# 加载原始表达的数据lname <- load(file = "data/Step01-airwayData.Rdata")lnameexprSet <- log10(as.matrix(express_cpm)+1)exprSet[1:6,1:6]## 1.样本表达总体分布-箱式图# 构造绘图数据data <- data.frame(expression=c(exprSet),sample=rep(colnames(exprSet),each=nrow(exprSet)))head(data)p <- ggplot(data = data, aes(x=sample,y=expression,fill=sample))p1 <- p + geom_boxplot() +mythe+ theme(axis.text.x = element_text(angle = 90)) +xlab(NULL) + ylab("log10(CPM+1)") + scale_fill_lancet()p1# 保存图片png(file = "result/1.sample_boxplot.png",width = 800, height = 900,res=150)print(p1)dev.off()## 2.样本表达总体分布-小提琴图p2 <- p + geom_violin() + mythe +theme(axis.text = element_text(size = 12),axis.text.x = element_text(angle = 90)) +xlab(NULL) + ylab("log10(CPM+1)")+scale_fill_lancet()p2# 保存图片png(file = "result/1.sample_violin.png",width = 800, height = 900,res=150)print(p2)dev.off()## 3.样本表达总体分布-概率密度分布图m <- ggplot(data=data, aes(x=expression))p3 <- m + geom_density(aes(fill=sample, colour=sample),alpha = 0.1) +xlab("log10(CPM+1)") + mythe +scale_fill_lancet()p3# 保存图片png(file = "result/1.sample_density.png",width = 800, height = 700, res=150)print(p3)dev.off()# 魔幻操作,一键清空rm(list = ls())options(stringsAsFactors = F)library(FactoMineR)library(factoextra)library(corrplot)library(pheatmap)library(tidyverse)# 加载数据并检查lname <- load(file = 'data/Step01-airwayData.Rdata')lname## 1.样本之间的相关性-层次聚类树----dat <- log10(express_cpm+1)dat[1:4,1:4]dim(dat)sampleTree <- hclust(dist(t(dat)), method = "average")plot(sampleTree)# 提取样本聚类信息temp <- as.data.frame(cutree(sampleTree,k = 2)) %>%rownames_to_column(var="sample")temp1 <- merge(temp,group,by.x = "sample",by.y="run_accession")table(temp1$`cutree(sampleTree, k = 2)`,temp1$sample_title)# 保存结果pdf(file = "result/2.sample_Treeplot.pdf",width = 7,height = 6)plot(sampleTree)dev.off()## 2.样本之间的相关性-PCA----# 第一步,数据预处理dat <- log10(express_cpm+1)dat[1:4,1:4]dat <- as.data.frame(t(dat))dat_pca <- PCA(dat, graph = FALSE)group_list <- group[match(group$run_accession,rownames(dat)), 2]group_list# geom.ind: point显示点,text显示文字# palette: 用不同颜色表示分组# addEllipses: 是否圈起来mythe <- theme_bw() +theme(panel.grid.major=element_blank(),panel.grid.minor=element_blank()) +theme(plot.title = element_text(hjust = 0.5))p <- fviz_pca_ind(dat_pca,geom.ind = "text", #pointcol.ind = group_list,palette = c("#00AFBB", "#E7B800"),addEllipses = T,legend.title = "Groups") + mythep# 保存结果pdf(file = "result/2.sample_PCA.pdf",width = 6.5,height = 6)plot(p)dev.off()## 3.样本之间的相关性-cor----# 选择差异变化大的基因算样本相关性exprSet <- express_cpmexprSet = exprSet[names(sort(apply(exprSet, 1, mad),decreasing = T)[1:800]),]dim(exprSet)# 计算相关性M <- cor(exprSet,method = "spearman")M# 构造注释条anno <- data.frame(group=group$sample_title,row.names = group$run_accession )# 保存结果pheatmap(M,display_numbers = T,annotation_col = anno,fontsize = 10,cellheight = 30,cellwidth = 30,cluster_rows = T,cluster_cols = T,filename = "result/2.sample_Cor.pdf",width = 7.5,height = 7)
三、差异表达分析
rm(list = ls())options(stringsAsFactors = F)# 加载包library(edgeR)library(ggplot2)# 读取基因表达矩阵信息并查看分组信息和表达矩阵数据lname <- load(file = "data/Step01-airwayData.Rdata")lname# 表达谱filter_count[1:4,1:4]# 分组信息group_list <- group[match(colnames(filter_count),group$run_accession),2]group_list# treat vs controlcomp <- unlist(strsplit("Dex_vs_untreated",split = "_vs_"))group_list <- factor(group_list,levels = comp)group_listtable(group_list)# 构建线性模型。0代表x线性模型的截距为0design <- model.matrix(~0+group_list)rownames(design) <- colnames(filter_count)colnames(design) <- levels(factor(group_list))design# 构建edgeR的DGEList对象DEG <- DGEList(counts=filter_count,group=factor(group_list))# 归一化基因表达分布DEG <- calcNormFactors(DEG)# 计算线性模型的参数DEG <- estimateGLMCommonDisp(DEG,design)DEG <- estimateGLMTrendedDisp(DEG, design)DEG <- estimateGLMTagwiseDisp(DEG, design)# 拟合线性模型fit <- glmFit(DEG, design)# 进行差异分析lrt <- glmLRT(fit, contrast=c(1,-1))# 提取过滤差异分析结果DEG_edgeR <- as.data.frame(topTags(lrt, n=nrow(DEG)))head(DEG_edgeR)# 筛选上下调,设定阈值fc_cutoff <- 1.5pvalue <- 0.05DEG_edgeR$regulated <- "normal"loc_up <- intersect(which( DEG_edgeR$logFC > log2(fc_cutoff) ),which( DEG_edgeR$PValue < pvalue) )loc_down <- intersect(which(DEG_edgeR$logFC < (-log2(fc_cutoff))),which(DEG_edgeR$PValue<pvalue))DEG_edgeR$regulated[loc_up] <- "up"DEG_edgeR$regulated[loc_down] <- "down"table(DEG_edgeR$regulated)## 添加一列gene symbol# 方法1:使用包library(org.Hs.eg.db)keytypes(org.Hs.eg.db)library(clusterProfiler)id2symbol <- bitr(rownames(DEG_edgeR),fromType = "ENSEMBL",toType = "SYMBOL",OrgDb = org.Hs.eg.db)head(id2symbol)DEG_edgeR <- cbind(GeneID=rownames(DEG_edgeR),DEG_edgeR)DEG_edgeR_symbol <- merge(id2symbol,DEG_edgeR,by.x="ENSEMBL",by.y="GeneID",all.y=T)head(DEG_edgeR_symbol)# 方法2:gtf文件中得到的id与name关系# Assembly: GRCh37(hg19) Release: ?# 使用上课测试得到的count做# 选择显著差异表达的结果library(tidyverse)DEG_edgeR_symbol_Sig <- filter(DEG_edgeR_symbol,regulated!="normal")# 保存write.csv(DEG_edgeR_symbol,"result/4.DEG_edgeR_all.csv", row.names = F)write.csv(DEG_edgeR_symbol_Sig,"result/4.DEG_edgeR_Sig.csv", row.names = F)save(DEG_edgeR_symbol,file = "data/Step03-edgeR_nrDEG.Rdata")##====== 检查是否上下调设置错了# 挑选一个差异表达基因head(DEG_edgeR_symbol_Sig)exp <- c(t(express_cpm[match("ENSG00000001626",rownames(express_cpm)),]))test <- data.frame(value=exp, group=group_list)ggplot(data=test,aes(x=group,y=value,fill=group)) + geom_boxplot()##可视化rm(list = ls())options(stringsAsFactors = F)library(ggplot2)library(tidyverse)# 读差异分析结果lname <- load(file = "data//Step03-edgeR_nrDEG.Rdata")# 根据需要修改DEG的值data <- DEG_edgeR_symbolcolnames(data)# 绘制火山图colnames(data)p <- ggplot(data=data, aes(x=logFC, y=-log10(PValue),color=regulated)) +geom_point(alpha=0.5, size=1.2) +theme_set(theme_set(theme_bw(base_size=20))) + theme_bw() +theme(panel.grid.major=element_blank(),panel.grid.minor=element_blank()) +xlab("log2FC") + ylab("-log10(Pvalue)") +scale_colour_manual(values = c(down='blue',normal='grey',up='red')) +geom_vline(xintercept=c(-(log2(1.5)),log2(1.5)),lty=2,col="black",lwd=0.6) +geom_hline(yintercept = -log10(0.05),lty=2,col="black",lwd=0.6)p# 添加top基因# 通过FC选取TOP10label <- data[order(abs(data$logFC),decreasing = T)[1:10],]# 通过pvalue选取TOP10#label <- data[order(abs(data$PValue),decreasing = F)[1:10],]label <- na.omit(label)p1 <- p + geom_point(size = 3, shape = 1, data = label) +ggrepel::geom_text_repel( aes(label = SYMBOL), data = label, color="black" )p1# 保存结果png(file = "result/5.Volcano_Plot.png",width = 900, height = 800, res=150)plot(p1)dev.off()rm(list = ls())options(stringsAsFactors = F)# 加载包library(pheatmap)library(tidyverse)# 加载原始表达矩阵lname <- load(file = "data/Step01-airwayData.Rdata")lnameexpress_cpm1 <- rownames_to_column(as.data.frame(express_cpm) ,var = "ID")# 读取差异分析结果lname <- load(file = "data/Step03-edgeR_nrDEG.Rdata")lname# 提取所有差异表达的基因名edgeR_sigGene <- DEG_edgeR_symbol[DEG_edgeR_symbol$regulated!="normal",]head(edgeR_sigGene)data <- merge(edgeR_sigGene,express_cpm1,by.x = "ENSEMBL",by.y = "ID")data <- na.omit(data)data <- data[!duplicated(data$SYMBOL),]# 绘制热图dat <- select(data,starts_with("SRR"))rownames(dat) <- data$SYMBOLdat[1:4,1:4]anno <- data.frame(group=group$sample_title,row.names = group$run_accession)pheatmap(dat,scale = "row",show_colnames =T,show_rownames = F, cluster_cols = T,annotation_col=anno,main = "edgeR's DEG")# 显示指定symbol,这里随便展示10个基因symbollabels <- rep(x = "",times=nrow(dat))labels[1:10] <- rownames(dat)[1:10]pheatmap(dat,scale = "row",show_colnames =T,show_rownames = T,cluster_cols = T,annotation_col=anno,labels_row = labels,fontsize_row = 8,main = "edgeR's DEG")# 按照指定顺序绘制热图dex_exp <- express_cpm[,match(rownames(anno)[which(anno$group=="Dex")],colnames(express_cpm))]untreated_exp <- express_cpm[,match(rownames(anno)[which(anno$group=="untreated")],colnames(express_cpm))]data_new <- cbind(dex_exp, untreated_exp)dat1 <- data_new[match(edgeR_sigGene$ENSEMBL,rownames(data_new)),]pheatmap(dat1, scale = "row",show_colnames =T,show_rownames = F,cluster_cols = F,annotation_col=anno,main = "edgeR's DEG")
四、功能注释
五、功能富集
1、GO_KEGG
rm(list = ls())
options(stringsAsFactors = F)
library(clusterProfiler)
library(org.Hs.eg.db)
library(GSEABase)
library(ggplot2)
library(tidyverse)
## Error in download.KEGG.Path(species)
# https://github.com/YuLab-SMU/clusterProfiler/pull/471
getOption("clusterProfiler.download.method")
#R.utils::setOption("clusterProfiler.download.method",'auto')
options(clusterProfiler.download.method = "wininet")
#options(clusterProfiler.download.method = "wget")
getOption("clusterProfiler.download.method")
# 读取差异分析结果
load(file = "data/Step03-edgeR_nrDEG.Rdata")
ls()
# 提取所有差异表达的基因名
DEG <- DEG_edgeR_symbol[DEG_edgeR_symbol$regulated!="normal",2]
head(DEG)
## ===GO数据库, 输出所有结果,后续可根据pvalue挑选结果
ego_CC <- enrichGO(gene=DEG, OrgDb= 'org.Hs.eg.db', keyType='SYMBOL', ont="CC", pvalueCutoff= 1,qvalueCutoff= 1)
ego_MF <- enrichGO(gene=DEG, OrgDb= 'org.Hs.eg.db', keyType='SYMBOL', ont="MF", pvalueCutoff= 1,qvalueCutoff= 1)
ego_BP <- enrichGO(gene=DEG, OrgDb= 'org.Hs.eg.db', keyType='SYMBOL', ont="BP", pvalueCutoff= 1,qvalueCutoff= 1)
p_BP <- barplot(ego_BP,showCategory = 10) + ggtitle("Biological process")
p_CC <- barplot(ego_CC,showCategory = 10) + ggtitle("Cellular component")
p_MF <- barplot(ego_MF,showCategory = 10) + ggtitle("Molecular function")
plotc <- p_BP/p_CC/p_MF
plotc
ggsave('result/6.enrichGO.png', plotc, width = 10,height = 16)
ego_BP <- data.frame(ego_BP)
ego_CC <- data.frame(ego_CC)
ego_MF <- data.frame(ego_MF)
write.csv(ego_BP,'result/6.enrichGO_BP.csv')
write.csv(ego_CC,'result/6.enrichGO_CC.csv')
write.csv(ego_MF,'result/6.enrichGO_MF.csv')
## === KEGG
genelist <- bitr(gene=DEG, fromType="SYMBOL", toType="ENTREZID", OrgDb='org.Hs.eg.db')
genelist <- pull(genelist,ENTREZID)
ekegg <- enrichKEGG(gene = genelist, organism = 'hsa', pvalueCutoff = 1, qvalueCutoff = 1)
p1 <- barplot(ekegg, showCategory=10)
p2 <- dotplot(ekegg, showCategory=10)
plotc = p1/p2
plotc
ggsave('result/6.enrichKEGG.png', plot = plotc, width = 8, height = 10)
ekegg <- data.frame(ekegg)
write.csv(ekegg,'result/6.enrichKEGG.csv')
## === 其他数据库通路
geneset <- read.gmt("data/MsigDB/v7.4/h.all.v7.4.symbols.gmt")
table(geneset$term)
geneset$term <- gsub(pattern = "HALLMARK_","", geneset$term)
geneset$term <- str_to_title(geneset$term)
my_path <- enricher(gene=DEG, pvalueCutoff = 1, qvalueCutoff = 1, TERM2GENE=geneset)
p1 <- barplot(my_path, showCategory=15,color = "pvalue")
p1
ggsave("result/6.enrich_HALLMARK.png", plot = p1, width = 8, height = 7)
my_path <- data.frame(my_path)
write.csv(my_path,"result/6.enrich_HALLMARK.csv")
2、GSEA
# 清空当前环境变量
rm(list = ls())
options(stringsAsFactors = F)
# 加载包
library(GSEABase)
library(clusterProfiler)
library(enrichplot)
library(ggplot2)
library(stats)
# 加载数据
load("data/Step03-edgeR_nrDEG.Rdata")
DEG <- DEG_edgeR_symbol
## 构造GSEA分析数据
# 去掉没有配对上symbol的行
DEG <- DEG[!is.na(DEG$SYMBOL),]
# 去掉重复行
DEG <- DEG[!duplicated(DEG$SYMBOL),]
geneList <- DEG$logFC
names(geneList) <- DEG$SYMBOL
head(geneList)
geneList <- sort(geneList,decreasing = T)
head(geneList)
tail(geneList)
# 选择gmt文件
geneset <- read.gmt("data/MsigDB/v7.4/c5.go.bp.v7.4.symbols.gmt")
# 运行,输出全部结果
egmt <- GSEA(geneList, TERM2GENE=geneset, pvalueCutoff = 1)
#出点图
dotplot(egmt)
#按p值出点图
dotplot(egmt,color="pvalue")
# 单个通路图
# 按照通路名
gseaplot2(egmt, "GOBP_MITOCHONDRIAL_GENOME_MAINTENANCE",
title = "GOBP_MITOCHONDRIAL_GENOME_MAINTENANCE")
# 按照行数
gseaplot2(egmt, 10, color="red", pvalue_table = T)
#按第一到第十个出图,不显示p值
gseaplot2(egmt, 1:10, color="red")
# 保存结果
go_gsea <- as.data.frame(egmt@result)
write.csv(go_gsea,"result/6.gsea_go_fc.csv",row.names = F)
代码均来自于生信技能树张娟老师
