这个示例与《示例:基于广义地图的线性单元复合体》的相同
#include <CGAL/Linear_cell_complex_for_combinatorial_map.h>
#include <iostream>
#include <algorithm>
typedef CGAL::Linear_cell_complex_for_combinatorial_map<3> LCC_3;
typedef LCC_3::Dart_handle Dart_handle;
typedef LCC_3::Point Point;
//一个仿函数,用于遍历一个体元的所有顶点
// Functor used to display all the vertices of a given volume.
template<class LCC>
struct Display_vol_vertices : public CGAL::cpp98::unary_function<LCC, void>
{
Display_vol_vertices(const LCC& alcc) :
lcc(alcc),
nb_volume(0)
{}
void operator() (typename LCC::Dart& d)
{
std::cout << "Volume " << ++nb_volume << " : ";
for (typename LCC::template One_dart_per_incident_cell_range<0, 3>::
const_iterator it = lcc.template one_dart_per_incident_cell<0, 3>
(lcc.dart_handle(d)).begin(),
itend = lcc.template one_dart_per_incident_cell<0, 3>
(lcc.dart_handle(d)).end();
it != itend; ++it)
{
std::cout << lcc.point(it) << "; ";
}
std::cout << std::endl;
}
private:
const LCC& lcc; //线性单元复合体(体模型)
unsigned int nb_volume; //该体元对应的索引(第nb_volume+1个体元)
};
int main()
{
LCC_3 lcc;
// Create two tetrahedra.
Dart_handle d1 = lcc.make_tetrahedron(Point(-1, 0, 0), Point(0, 2, 0),
Point(1, 0, 0), Point(1, 1, 2));
Dart_handle d2 = lcc.make_tetrahedron(Point(0, 2, -1),
Point(-1, 0, -1),
Point(1, 0, -1),
Point(1, 1, -3));
// Display all the vertices of the lcc by iterating on the
// Vertex_attribute container.
CGAL::IO::set_ascii_mode(std::cout);
std::cout << "Vertices: ";
for (LCC_3::Vertex_attribute_const_range::iterator
v = lcc.vertex_attributes().begin(),
vend = lcc.vertex_attributes().end();
v != vend; ++v)
std::cout << lcc.point_of_vertex_attribute(v) << "; ";
std::cout << std::endl;
// Display the vertices of each volume by iterating on darts.
std::for_each(lcc.one_dart_per_cell<3>().begin(),
lcc.one_dart_per_cell<3>().end(),
Display_vol_vertices<LCC_3>(lcc));
// 3-Sew the 2 tetrahedra along one facet
lcc.sew<3>(d1, d2);
// Display the vertices of each volume by iterating on darts.
std::for_each(lcc.one_dart_per_cell<3>().begin(),
lcc.one_dart_per_cell<3>().end(),
Display_vol_vertices<LCC_3>(lcc));
// Translate the second tetrahedra by a given vector
LCC_3::Vector v(3, 1, 1);
for (LCC_3::One_dart_per_incident_cell_range<0, 3>::iterator
it = lcc.one_dart_per_incident_cell<0, 3>(d2).begin(),
itend = lcc.one_dart_per_incident_cell<0, 3>(d2).end();
it != itend; ++it)
{
lcc.point(it) = LCC_3::Traits::Construct_translated_point_3()
(lcc.point(it), v);
}
// Display the vertices of each volume by iterating on darts.
std::for_each(lcc.one_dart_per_cell<3>().begin(),
lcc.one_dart_per_cell<3>().end(),
Display_vol_vertices<LCC_3>(lcc));
// We display the lcc characteristics.
std::cout << "LCC characteristics: ";
lcc.display_characteristics(std::cout) << ", valid=" << lcc.is_valid()
<< std::endl;
return EXIT_SUCCESS;
}
下一篇:Nef多面体的三维布尔运算