SGD with momentum
使用示例
// 新建SGD优化器
std::shared_ptr<SGD> solver(new SGD);
// 设置模型中需要优化的参数
solver->append(model->parameters());
// 设置momentum和weight decay
solver->setMomentum(0.9f);
solver->setWeightDecay(0.0005f);
// 设置正则化方法,默认L2
solver->setRegularizationMethod(RegularizationMethod::L2);
// 设置学习率
solver->setLearningRate(0.001);
// 根据loss计算梯度,并更新参数
solver->step(loss);
ADAM
使用示例
// 新建ADAM优化器
std::shared_ptr<SGD> solver(new ADAM);
// 设置模型中需要优化的参数
solver->append(model->parameters());
// 设置ADAM的两个momentum,设置weight decay
solver->setMomentum(0.9f);
solver->setMomentum2(0.99f);
solver->setWeightDecay(0.0005f);
// 设置正则化方法,默认L2
solver->setRegularizationMethod(RegularizationMethod::L2);
// 设置学习率
solver->setLearningRate(0.001);
// 根据loss计算梯度,并更新参数
solver->step(loss);
Loss
目前支持的Loss,也可自行设计
VARP _CrossEntropy(Express::VARP predicts, Express::VARP oneHotTargets);
VARP _KLDivergence(Express::VARP predicts, Express::VARP oneHotTargets);
VARP _MSE(Express::VARP predicts, Express::VARP oneHotTargets);
VARP _MAE(Express::VARP predicts, Express::VARP oneHotTargets);
VARP _Hinge(Express::VARP predicts, Express::VARP oneHotTargets);
VARP _DistillLoss(Express::VARP studentLogits, Express::VARP teacherLogits, Express::VARP oneHotTargets,
const float temperature, const float alpha);