该模块用于读取保存在硬盘上的数据,将其包装并输出为MNN训练可用的数据类型。该模块源码位于MNN_root/tools/train/source/data/目录下。若要使用,请包含DataLoader.hpp头文件即可,该模块中其他组件会全部导入,用于构建DataLoader。
相关demo
1、MNN_root/tools/train/source/demo/dataLoaderDemo.cpp
使用MNIST数据集构建DataLoader,并进行输出显示。
2、MNN_root/tools/train/source/demo/dataLoaderTest.cpp
使用MNIST数据集构建DataLoader,并测试DataLoader中一些组件。
3、MNN_root/tools/train/source/demo/ImageDatasetDemo.cpp
读取硬盘上保存的图片数据,并显示出来。显示需要用到OpenCV,并在编译时打开MNN_USE_OPENCV
宏。
自定义Dataset
可参考MNN_root/tools/train/source/datasets/中预置数据集的写法,继承Dataset类,实现两个抽象函数即可,例如:
// MnistDataset.cpp
// 返回MNIST数据集中一张图片数据,及其对应的label
Example MnistDataset::get(size_t index) {
auto data = _Input({1, kImageRows, kImageColumns}, NCHW, halide_type_of<uint8_t>());
auto label = _Input({}, NCHW, halide_type_of<uint8_t>());
auto dataPtr = mImagePtr + index * kImageRows * kImageColumns;
::memcpy(data->writeMap<uint8_t>(), dataPtr, kImageRows * kImageColumns);
auto labelPtr = mLabelsPtr + index;
::memcpy(label->writeMap<uint8_t>(), labelPtr, 1);
auto returnIndex = _Const(index);
// return the index for test
return {{data, returnIndex}, {label}};
}
// 返回数据集大小,对于MNIST训练集是60000,测试集是10000
size_t MnistDataset::size() {
return mImages->getInfo()->dim[0];
}
DataLoader使用示例
使用流程:自定义Dataset,构造DataLoader,读取数据,DataLoader->reset();
//
// ImageDatasetDemo.cpp
// MNN
//
// Created by MNN on 2019/11/20.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <iostream>
#include "DataLoader.hpp"
#include "DemoUnit.hpp"
#include "ImageDataset.hpp"
#include "RandomSampler.hpp"
#include "Sampler.hpp"
#include "Transform.hpp"
#include "TransformDataset.hpp"
#ifdef MNN_USE_OPENCV
#include <opencv2/opencv.hpp> // use opencv to show pictures
using namespace cv;
#endif
using namespace std;
/*
* this is an demo for how to use the ImageDataset and DataLoader
*/
class ImageDatasetDemo : public DemoUnit {
public:
// this function is an example to use the lambda transform
// here we use lambda transform to normalize data from 0~255 to 0~1
static Example func(Example example) {
// // an easier way to do this
auto cast = _Cast(example.first[0], halide_type_of<float>());
example.first[0] = _Multiply(cast, _Const(1.0f / 255.0f));
return example;
}
virtual int run(int argc, const char* argv[]) override {
if (argc != 3) {
cout << "usage: ./runTrainDemo.out ImageDatasetDemo path/to/images/ path/to/image/txt\n" << endl;
// ImageDataset的数据格式,采用的是ImageNet数据集的格式,你也可以写一个自己的数据集,自定义格式
cout << "the ImageDataset read stored images as input data.\n"
"use 'pathToImages' and a txt file to construct a ImageDataset.\n"
"the txt file should use format as below:\n"
" image1.jpg label1,label2,...\n"
" image2.jpg label3,label4,...\n"
" ...\n"
"the ImageDataset would read images from:\n"
" pathToImages/image1.jpg\n"
" pathToImages/image2.jpg\n"
" ...\n"
<< endl;
return 0;
}
std::string pathToImages = argv[1];
std::string pathToImageTxt = argv[2];
// ImageDataset可配置数据预处理
auto converImagesToFormat = ImageDataset::DestImageFormat::RGB;
int resizeHeight = 224;
int resizeWidth = 224;
std::vector<float> scales = {1/255.0, 1/255.0, 1/255.0};
auto config = ImageDataset::ImageConfig(converImagesToFormat, resizeHeight, resizeWidth, scales);
bool readAllImagesToMemory = false;
// 构建ImageDataset
auto dataset = std::make_shared<ImageDataset>(pathToImages, pathToImageTxt, config, readAllImagesToMemory);
const int batchSize = 1;
const int numWorkers = 1;
// 构建DataLoader,这里会将一个batch数据stack为一个VARP(Tensor)
auto dataLoader = std::shared_ptr<DataLoader>(DataLoader::makeDataLoader(dataset, batchSize, true, false, numWorkers));
const size_t iterations = dataset->size() / batchSize;
for (int i = 0; i < iterations; i++) {
// 读取数据
auto trainData = dataLoader->next();
auto data = trainData[0].first[0]->readMap<float_t>();
auto label = trainData[0].second[0]->readMap<int32_t>();
cout << "index: " << i << " label: " << int(label[0]) << endl;
#ifdef MNN_USE_OPENCV
// only show the first picture in the batch
Mat image = Mat(resizeHeight, resizeWidth, CV_32FC(3), (void*)data);
imshow("image", image);
waitKey(-1);
#endif
}
// 每完整过一次数据集必须重置DataLoader
// this will reset the sampler's internal state
dataLoader->reset();
return 0;
}
};
DemoUnitSetRegister(ImageDatasetDemo, "ImageDatasetDemo");
相关类和概念
VARP
MNN动态图中的变量,类似于pytorch中的Tensor
Example
DataLoader输出数据的最小单位
/**
First: data: a vector of input tensors (for single input dataset is only one)
Second: target: a vector of output tensors (for single output dataset is only one)
*/
typedef std::pair<std::vector<VARP>, std::vector<VARP>> Example;
可以看到一个Example是一个数据对,其first部分是输入,second部分是target。由于网络有可能有多个输入和多个target,所以first和second都是vector结构。
RandomSampler : public Sampler
随机采样序列生成器,例如图片数据集中有1000张图片,则生成采样序列0~999,根据配置指定是否进行shuffle
public:
// size: 采样序列长度
// shuffle: 是否生成随机采样序列
explicit RandomSampler(size_t size, bool shuffle = true);
// 重置采样器内部状态
void reset(size_t size) override;
// 采样器长度
size_t size() override;
// 返回内部生成的采样序列
const std::vector<size_t> indices();
// 返回已经使用的采样序列数量
size_t index();
// 获取下一个长度为batchSize的采样序列
std::vector<size_t> next(size_t batchSize) override;
private:
std::vector<size_t> mIndices;
size_t mIndex = 0;
bool mShuffle;
Dataset
数据集抽象基类,用户自定义数据集需继承此基类,并实现抽象函数,可参考MNN_root/tools/train/source/datasets/中预置数据集的写法
// 返回数据集的大小,例如1000张图片的数据集,其大小为1000
virtual size_t size() = 0;
// 返回数据集中指定index的数据,如给定123,返回第123张图片数据
virtual Example get(size_t index) = 0;
// 返回数据集中指定index的一批数据,为一个batch
std::vector<Example> getBatch(std::vector<size_t> indices);
Transform
抽象基类,对一个batch中的每一个数据进行某个变换,可以是一些预处理等
BatchTransform
抽象基类,对一个batch的数据进行某个变换,可以是一些预处理等
StackTransform : public BatchTransform
将一个Dataset输出的vector
Stack( (c, h, w), (c, h, w), (c, h, w)… ) —> (n, c, h, w)
LambdaTransform : public Transform
对Dataset输出的每一个Example进行单独处理,例如中心化,归一化等
TransformDataset : public Dataset
对Dataset进行某种Transform,仍是一个Dataset,用于输出数据
DataLoaderConfig
对DataLoader进行配置,可配置项为:
batchSize: 指定batch大小 numWorkers: 多线程预读取的线程数
DataLoader
根据采样器生成的采样序列,到对应的Dataset中取得对应的数据并输出
// 构造函数
DataLoader(std::shared_ptr<BatchDataset> dataset, std::shared_ptr<Sampler> sampler,
std::shared_ptr<DataLoaderConfig> config);
// 构造DataLoader,无Transform
static DataLoader* makeDataLoader(std::shared_ptr<BatchDataset> dataset,
const int batchSize,
const bool stack = true, // 是否将一个batch数据叠加为一个VARP(Tensor)
const bool shuffle = true,
const int numWorkers = 0);
// 构造DataLoader,有Transform,Transform可多个叠加
static DataLoader* makeDataLoader(std::shared_ptr<BatchDataset> dataset,
std::vector<std::shared_ptr<BatchTransform>> transforms,
const int batchSize,
const bool shuffle = true,
const int numWorkers = 0);
// 指定batch size后,迭代多少次用完全部数据,最后一个batch不足batchsize也会输出
size_t iterNumber() const;
// 数据集大小
size_t size() const;
// 输出一个batch的数据
std::vector<Example> next();
// 清空内部数据队列,重置内部采样器
void clean();
// clean(),并重新预读取,Dataset每次数据全部输出完毕,必须reset
void reset();