解法一:广度优先遍历
广度优先遍历,对于值为偶数的结点,对其孙子结点求和。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int sumEvenGrandparent(TreeNode root) {
Queue<TreeNode> queue = new LinkedList<>();
if (root != null) {
queue.offer(root);
}
int sum = 0;
while (!queue.isEmpty()) {
TreeNode tmp = queue.poll();
// 对四个可能的孙子结点求和
if (tmp.val % 2 == 0) {
if (tmp.left != null) {
if (tmp.left.left != null) {
sum += tmp.left.left.val;
}
if (tmp.left.right != null) {
sum += tmp.left.right.val;
}
}
if (tmp.right != null) {
if (tmp.right.left != null) {
sum += tmp.right.left.val;
}
if (tmp.right.right != null) {
sum += tmp.right.right.val;
}
}
}
if (tmp.left != null) {
queue.offer(tmp.left);
}
if (tmp.right != null) {
queue.offer(tmp.right);
}
}
return sum;
}
}
解法二:深度优先遍历
基本同上,但采用深度优先遍历。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int sumEvenGrandparent(TreeNode root) {
return dfs(root);
}
private int dfs(TreeNode root) {
if (root == null) {
return 0;
}
int sum = 0;
// 对四个可能的孙子结点求和
if (root.val % 2 == 0) {
if (root.left != null) {
if (root.left.left != null) {
sum += root.left.left.val;
}
if (root.left.right != null) {
sum += root.left.right.val;
}
}
if (root.right != null) {
if (root.right.left != null) {
sum += root.right.left.val;
}
if (root.right.right != null) {
sum += root.right.right.val;
}
}
}
if (root.left != null) {
sum += dfs(root.left);
}
if (root.right != null) {
sum += dfs(root.right);
}
return sum;
}
}