解法一:动态规划
考虑 N
维子矩阵时,dp[N][i][j]
表示以元素 (i,j)
为左上角,边长为 N
的子矩阵内部是否全为1。
考察满足条件的 N
维矩阵时,不需要考察每一个元素,只需要考察相邻的4个满足条件的 N-1
维矩阵即可,动规方程方程如下:
class Solution {
public int countSquares(int[][] matrix) {
final int row = matrix.length;
final int col = matrix[0].length;
int ans = 0;
for (int i = 0; i < row; ++i) {
for (int j = 0; j < col; ++j) {
if (matrix[i][j] > 0) {
++ans;
}
}
}
for (int k = 1; k < Math.min(row, col); ++k) {
for (int i = 0; i < row - k; ++i) {
for (int j = 0; j < col - k; ++j) {
matrix[i][j] = matrix[i][j] & matrix[i + 1][j] & matrix[i][j + 1] & matrix[i + 1][j + 1];
if (matrix[i][j] > 0) {
++ans;
}
}
}
}
return ans;
}
}
解法二:动态规划
参考官方题解:https://leetcode-cn.com/problems/count-square-submatrices-with-all-ones/solution/
class Solution {
public int countSquares(int[][] matrix) {
final int row = matrix.length;
final int col = matrix[0].length;
int[][] dp = new int[row][col];
int ans = 0;
for (int i = 0; i < row; ++i) {
for (int j = 0; j < col; ++j) {
if (matrix[i][j] == 0) {
dp[i][j] = 0;
} else if ((i == 0) || (j == 0)) {
dp[i][j] = matrix[i][j];
} else {
dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
}
ans += dp[i][j];
}
}
return ans;
}
}