解法一:动态规划
dp[i][j]
表示 text1[0:i]
和 text2[0:j]
的最长公共子序列长度。状态转移方程如下:
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
char[] s1 = text1.toCharArray();
char[] s2 = text2.toCharArray();
final int len1 = s1.length;
final int len2 = s2.length;
// dp[i][j]表示text1[0:i]和text2[0:j]的最长公共子序列长度
int[][] dp = new int[len1 + 1][len2 + 1];
for (int i = 1; i <= len1; ++i) {
for (int j = 1; j <= len2; ++j) {
if (s1[i - 1] == s2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[len1][len2];
}
}