解法一:动态规划
比较简单的一道动态规划题。dp[i][j]
表示到达 (i, j)
时的最大礼物价值,显然有以下状态转移方程:
class Solution {
public int maxValue(int[][] grid) {
int row = grid.length;
int col = grid[0].length;
// dp[i][j]表示到达(i, j)时的最大礼物价值
int[][] dp = new int[row][col];
dp[0][0] = grid[0][0];
for (int i = 1; i < row; ++i) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int i = 1; i < col; ++i) {
dp[0][i] = dp[0][i - 1] + grid[0][i];
}
for (int i = 1; i < row; ++i) {
for (int j = 1; j < col; ++j) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[row - 1][col - 1];
}
}