上一节课中,我们学习了观察者模式的原理、实现、应用场景,重点介绍了不同应用场景下,几种不同的实现方式,包括:同步阻塞、异步非阻塞、进程内、进程间的实现方式。
同步阻塞是最经典的实现方式,主要是为了代码解耦;异步非阻塞除了能实现代码解耦之外,还能提高代码的执行效率;进程间的观察者模式解耦更加彻底,一般是基于消息队列来实现,用来实现不同进程间的被观察者和观察者之间的交互。
今天,我们聚焦于异步非阻塞的观察者模式,带你实现一个类似 Google Guava EventBus 的通用框架。等你学完本节课之后,你会发现,实现一个框架也并非一件难事。
话不多说,让我们正式开始今天的学习吧!

异步非阻塞观察者模式的简易实现

上一节课中,我们讲到,对于异步非阻塞观察者模式,如果只是实现一个简易版本,不考虑任何通用性、复用性,实际上是非常容易的。
我们有两种实现方式。其中一种是:在每个 handleRegSuccess() 函数中创建一个新的线程执行代码逻辑;另一种是:在 UserController 的 register() 函数中使用线程池来执行每个观察者的 handleRegSuccess() 函数。两种实现方式的具体代码如下所示:

  1. // 第一种实现方式,其他类代码不变,就没有再重复罗列
  2. public class RegPromotionObserver implements RegObserver {
  3. private PromotionService promotionService; // 依赖注入
  4. @Override
  5. public void handleRegSuccess(long userId) {
  6. Thread thread = new Thread(new Runnable() {
  7. @Override
  8. public void run() {
  9. promotionService.issueNewUserExperienceCash(userId);
  10. }
  11. });
  12. thread.start();
  13. }
  14. }
  15. // 第二种实现方式,其他类代码不变,就没有再重复罗列
  16. public class UserController {
  17. private UserService userService; // 依赖注入
  18. private List<RegObserver> regObservers = new ArrayList<>();
  19. private Executor executor;
  20. public UserController(Executor executor) {
  21. this.executor = executor;
  22. }
  23. public void setRegObservers(List<RegObserver> observers) {
  24. regObservers.addAll(observers);
  25. }
  26. public Long register(String telephone, String password) {
  27. //省略输入参数的校验代码
  28. //省略userService.register()异常的try-catch代码
  29. long userId = userService.register(telephone, password);
  30. for (RegObserver observer : regObservers) {
  31. executor.execute(new Runnable() {
  32. @Override
  33. public void run() {
  34. observer.handleRegSuccess(userId);
  35. }
  36. });
  37. }
  38. return userId;
  39. }
  40. }

对于第一种实现方式,频繁地创建和销毁线程比较耗时,并且并发线程数无法控制,创建过多的线程会导致堆栈溢出。第二种实现方式,尽管利用了线程池解决了第一种实现方式的问题,但线程池、异步执行逻辑都耦合在了 register() 函数中,增加了这部分业务代码的维护成本。
如果我们的需求更加极端一点,需要在同步阻塞和异步非阻塞之间灵活切换,那就要不停地修改 UserController 的代码。除此之外,如果在项目中,不止一个业务模块需要用到异步非阻塞观察者模式,那这样的代码实现也无法做到复用。
我们知道,框架的作用有:隐藏实现细节,降低开发难度,做到代码复用,解耦业务与非业务代码,让程序员聚焦业务开发。针对异步非阻塞观察者模式,我们也可以将它抽象成框架来达到这样的效果,而这个框架就是我们这节课要讲的 EventBus。

EventBus 框架功能需求介绍

EventBus 翻译为“事件总线”,它提供了实现观察者模式的骨架代码。我们可以基于此框架,非常容易地在自己的业务场景中实现观察者模式,不需要从零开始开发。其中,Google Guava EventBus 就是一个比较著名的 EventBus 框架,它不仅仅支持异步非阻塞模式,同时也支持同步阻塞模式
现在,我们就通过例子来看一下,Guava EventBus 具有哪些功能。还是上节课那个用户注册的例子,我们用 Guava EventBus 重新实现一下,代码如下所示:

  1. public class UserController {
  2. private UserService userService; // 依赖注入
  3. private EventBus eventBus;
  4. private static final int DEFAULT_EVENTBUS_THREAD_POOL_SIZE = 20;
  5. public UserController() {
  6. //eventBus = new EventBus(); // 同步阻塞模式
  7. eventBus = new AsyncEventBus(Executors.newFixedThreadPool(DEFAULT_EVENTBUS_THREAD_POOL_SIZE)); // 异步非阻塞模式
  8. }
  9. public void setRegObservers(List<Object> observers) {
  10. for (Object observer : observers) {
  11. eventBus.register(observer);
  12. }
  13. }
  14. public Long register(String telephone, String password) {
  15. //省略输入参数的校验代码
  16. //省略userService.register()异常的try-catch代码
  17. long userId = userService.register(telephone, password);
  18. eventBus.post(userId);
  19. return userId;
  20. }
  21. }
  22. public class RegPromotionObserver {
  23. private PromotionService promotionService; // 依赖注入
  24. @Subscribe
  25. public void handleRegSuccess(long userId) {
  26. promotionService.issueNewUserExperienceCash(userId);
  27. }
  28. }
  29. public class RegNotificationObserver {
  30. private NotificationService notificationService;
  31. @Subscribe
  32. public void handleRegSuccess(long userId) {
  33. notificationService.sendInboxMessage(userId, "...");
  34. }
  35. }

利用 EventBus 框架实现的观察者模式,跟从零开始编写的观察者模式相比,从大的流程上来说,实现思路大致一样,都需要定义 Observer,并且通过 register() 函数注册 Observer,也都需要通过调用某个函数(比如,EventBus 中的 post() 函数)来给 Observer 发送消息(在 EventBus 中消息被称作事件 event)。
但在实现细节方面,它们又有些区别。基于 EventBus,我们不需要定义 Observer 接口,任意类型的对象都可以注册到 EventBus 中,通过 @Subscribe 注解来标明类中哪个函数可以接收被观察者发送的消息。
接下来,我们详细地讲一下,Guava EventBus 的几个主要的类和函数。
EventBus、AsyncEventBus
Guava EventBus 对外暴露的所有可调用接口,都封装在 EventBus 类中。其中,EventBus 实现了同步阻塞的观察者模式,AsyncEventBus 继承自 EventBus,提供了异步非阻塞的观察者模式。具体使用方式如下所示:

  1. EventBus eventBus = new EventBus(); // 同步阻塞模式
  2. EventBus eventBus = new AsyncEventBus(Executors.newFixedThreadPool(8));// 异步阻塞模式

register() 函数
EventBus 类提供了 register() 函数用来注册观察者。具体的函数定义如下所示。它可以接受任何类型(Object)的观察者。而在经典的观察者模式的实现中,register() 函数必须接受实现了同一 Observer 接口的类对象。

  1. public void register(Object object);

unregister() 函数
相对于 register() 函数,unregister() 函数用来从 EventBus 中删除某个观察者。我就不多解释了,具体的函数定义如下所示:

  1. public void unregister(Object object);

post() 函数
EventBus 类提供了 post() 函数,用来给观察者发送消息。具体的函数定义如下所示:

  1. public void post(Object event);

跟经典的观察者模式的不同之处在于,当我们调用 post() 函数发送消息的时候,并非把消息发送给所有的观察者,而是发送给可匹配的观察者。所谓可匹配指的是,能接收的消息类型是发送消息(post 函数定义中的 event)类型的父类。我举个例子来解释一下。
比如,AObserver 能接收的消息类型是 XMsg,BObserver 能接收的消息类型是 YMsg,CObserver 能接收的消息类型是 ZMsg。其中,XMsg 是 YMsg 的父类。当我们如下发送消息的时候,相应能接收到消息的可匹配观察者如下所示:

  1. XMsg xMsg = new XMsg();
  2. YMsg yMsg = new YMsg();
  3. ZMsg zMsg = new ZMsg();
  4. post(xMsg); => AObserver接收到消息
  5. post(yMsg); => AObserverBObserver接收到消息
  6. post(zMsg); => CObserver接收到消息

你可能会问,每个 Observer 能接收的消息类型是在哪里定义的呢?我们来看下 Guava EventBus 最特别的一个地方,那就是 @Subscribe 注解。
@Subscribe 注解
EventBus 通过 @Subscribe 注解来标明,某个函数能接收哪种类型的消息。具体的使用代码如下所示。在 DObserver 类中,我们通过 @Subscribe 注解了两个函数 f1()、f2()。

  1. public class DObserver {
  2. //...省略其他属性和方法...
  3. @Subscribe
  4. public void f1(PMsg event) {
  5. //...
  6. }
  7. @Subscribe
  8. public void f2(QMsg event) {
  9. //...
  10. }
  11. }

当通过 register() 函数将 DObserver 类对象注册到 EventBus 的时候,EventBus 会根据 @Subscribe 注解找到 f1() 和 f2(),并且将两个函数能接收的消息类型记录下来(PMsg->f1,QMsg->f2)。当我们通过 post() 函数发送消息(比如 QMsg 消息)的时候,EventBus 会通过之前的记录(QMsg->f2),调用相应的函数(f2)。

手把手实现一个 EventBus 框架

Guava EventBus 的功能我们已经讲清楚了,总体上来说,还是比较简单的。接下来,我们就重复造轮子,“山寨”一个 EventBus 出来。
我们重点来看,EventBus 中两个核心函数 register() 和 post() 的实现原理。弄懂了它们,基本上就弄懂了整个 EventBus 框架。下面两张图是这两个函数的实现原理图。
image.png
image.png
从图中我们可以看出,最关键的一个数据结构是 Observer 注册表,记录了消息类型和可接收消息函数的对应关系。当调用 register() 函数注册观察者的时候,EventBus 通过解析 @Subscribe 注解,生成 Observer 注册表。当调用 post() 函数发送消息的时候,EventBus 通过注册表找到相应的可接收消息的函数,然后通过 Java 的反射语法来动态地创建对象、执行函数。对于同步阻塞模式,EventBus 在一个线程内依次执行相应的函数。对于异步非阻塞模式,EventBus 通过一个线程池来执行相应的函数。
弄懂了原理,实现起来就简单多了。整个小框架的代码实现包括 5 个类:EventBus、AsyncEventBus、Subscribe、ObserverAction、ObserverRegistry。接下来,我们依次来看下这 5 个类。

1.Subscribe

Subscribe 是一个注解,用于标明观察者中的哪个函数可以接收消息。

  1. @Retention(RetentionPolicy.RUNTIME)
  2. @Target(ElementType.METHOD)
  3. @Beta
  4. public @interface Subscribe {}

2.ObserverAction

ObserverAction 类用来表示 @Subscribe 注解的方法,其中,target 表示观察者类,method 表示方法。它主要用在 ObserverRegistry 观察者注册表中。

  1. public class ObserverAction {
  2. private Object target;
  3. private Method method;
  4. public ObserverAction(Object target, Method method) {
  5. this.target = Preconditions.checkNotNull(target);
  6. this.method = method;
  7. this.method.setAccessible(true);
  8. }
  9. public void execute(Object event) { // event是method方法的参数
  10. try {
  11. method.invoke(target, event);
  12. } catch (InvocationTargetException | IllegalAccessException e) {
  13. e.printStackTrace();
  14. }
  15. }
  16. }

3.ObserverRegistry

ObserverRegistry 类就是前面讲到的 Observer 注册表,是最复杂的一个类,框架中几乎所有的核心逻辑都在这个类中。这个类大量使用了 Java 的反射语法,不过代码整体来说都不难理解,其中,一个比较有技巧的地方是 CopyOnWriteArraySet 的使用。
CopyOnWriteArraySet,顾名思义,在写入数据的时候,会创建一个新的 set,并且将原始数据 clone 到新的 set 中,在新的 set 中写入数据完成之后,再用新的 set 替换老的 set。这样就能保证在写入数据的时候,不影响数据的读取操作,以此来解决读写并发问题。除此之外,CopyOnWriteSet 还通过加锁的方式,避免了并发写冲突。具体的作用你可以去查看一下 CopyOnWriteSet 类的源码,一目了然。

  1. public class ObserverRegistry {
  2. private ConcurrentMap<Class<?>, CopyOnWriteArraySet<ObserverAction>> registry = new ConcurrentHashMap<>();
  3. public void register(Object observer) {
  4. Map<Class<?>, Collection<ObserverAction>> observerActions = findAllObserverActions(observer);
  5. for (Map.Entry<Class<?>, Collection<ObserverAction>> entry : observerActions.entrySet()) {
  6. Class<?> eventType = entry.getKey();
  7. Collection<ObserverAction> eventActions = entry.getValue();
  8. CopyOnWriteArraySet<ObserverAction> registeredEventActions = registry.get(eventType);
  9. if (registeredEventActions == null) {
  10. registry.putIfAbsent(eventType, new CopyOnWriteArraySet<>());
  11. registeredEventActions = registry.get(eventType);
  12. }
  13. registeredEventActions.addAll(eventActions);
  14. }
  15. }
  16. public List<ObserverAction> getMatchedObserverActions(Object event) {
  17. List<ObserverAction> matchedObservers = new ArrayList<>();
  18. Class<?> postedEventType = event.getClass();
  19. for (Map.Entry<Class<?>, CopyOnWriteArraySet<ObserverAction>> entry : registry.entrySet()) {
  20. Class<?> eventType = entry.getKey();
  21. Collection<ObserverAction> eventActions = entry.getValue();
  22. if (postedEventType.isAssignableFrom(eventType)) {
  23. matchedObservers.addAll(eventActions);
  24. }
  25. }
  26. return matchedObservers;
  27. }
  28. private Map<Class<?>, Collection<ObserverAction>> findAllObserverActions(Object observer) {
  29. Map<Class<?>, Collection<ObserverAction>> observerActions = new HashMap<>();
  30. Class<?> clazz = observer.getClass();
  31. for (Method method : getAnnotatedMethods(clazz)) {
  32. Class<?>[] parameterTypes = method.getParameterTypes();
  33. Class<?> eventType = parameterTypes[0];
  34. if (!observerActions.containsKey(eventType)) {
  35. observerActions.put(eventType, new ArrayList<>());
  36. }
  37. observerActions.get(eventType).add(new ObserverAction(observer, method));
  38. }
  39. return observerActions;
  40. }
  41. private List<Method> getAnnotatedMethods(Class<?> clazz) {
  42. List<Method> annotatedMethods = new ArrayList<>();
  43. for (Method method : clazz.getDeclaredMethods()) {
  44. if (method.isAnnotationPresent(Subscribe.class)) {
  45. Class<?>[] parameterTypes = method.getParameterTypes();
  46. Preconditions.checkArgument(parameterTypes.length == 1, "Method %s has @Subscribe annotation but has %s parameters." + "Subscriber methods must have exactly 1 parameter.", method, parameterTypes.length);
  47. annotatedMethods.add(method);
  48. }
  49. }
  50. return annotatedMethods;
  51. }
  52. }

4.EventBus

EventBus 实现的是阻塞同步的观察者模式。看代码你可能会有些疑问,这明明就用到了线程池 Executor 啊。实际上,MoreExecutors.directExecutor() 是 Google Guava 提供的工具类,看似是多线程,实际上是单线程。之所以要这么实现,主要还是为了跟 AsyncEventBus 统一代码逻辑,做到代码复用。

  1. public class EventBus {
  2. private Executor executor;
  3. private ObserverRegistry registry = new ObserverRegistry();
  4. public EventBus() {
  5. this(MoreExecutors.directExecutor());
  6. }
  7. protected EventBus(Executor executor) {
  8. this.executor = executor;
  9. }
  10. public void register(Object object) {
  11. registry.register(object);
  12. }
  13. public void post(Object event) {
  14. List<ObserverAction> observerActions = registry.getMatchedObserverActions(event);
  15. for (ObserverAction observerAction : observerActions) {
  16. executor.execute(new Runnable() {
  17. @Override
  18. public void run() {
  19. observerAction.execute(event);
  20. }
  21. });
  22. }
  23. }
  24. }

5.AsyncEventBus

有了 EventBus,AsyncEventBus 的实现就非常简单了。为了实现异步非阻塞的观察者模式,它就不能再继续使用 MoreExecutors.directExecutor() 了,而是需要在构造函数中,由调用者注入线程池。

  1. public class AsyncEventBus extends EventBus {
  2. public AsyncEventBus(Executor executor) {
  3. super(executor);
  4. }
  5. }

至此,我们用了不到 200 行代码,就实现了一个还算凑活能用的 EventBus,从功能上来讲,它跟 Google Guava EventBus 几乎一样。不过,如果去查看Google Guava EventBus 的源码,你会发现,在实现细节方面,相比我们现在的实现,它其实做了很多优化,比如优化了在注册表中查找消息可匹配函数的算法。如果有时间的话,建议你去读一下它的源码。

重点回顾

好了,今天的内容到此就讲完了。我们来一块总结回顾一下,你需要重点掌握的内容。
框架的作用有:隐藏实现细节,降低开发难度,做到代码复用,解耦业务与非业务代码,让程序员聚焦业务开发。针对异步非阻塞观察者模式,我们也可以将它抽象成框架来达到这样的效果,而这个框架就是我们这节课讲的 EventBus。EventBus 翻译为“事件总线”,它提供了实现观察者模式的骨架代码。我们可以基于此框架,非常容易地在自己的业务场景中实现观察者模式,不需要从零开始开发。
很多人觉得做业务开发没有技术挑战,实际上,做业务开发也会涉及很多非业务功能的开发,比如今天讲到的 EventBus。在平时的业务开发中,我们要善于抽象这些非业务的、可复用的功能,并积极地把它们实现成通用的框架。

课堂讨论

在今天内容的第二个模块“EventBus 框架功能需求介绍”中,我们用 Guava EventBus 重新实现了 UserController,实际上,代码还是不够解耦。UserController 还是耦合了很多跟观察者模式相关的非业务代码,比如创建线程池、注册 Observer。为了让 UserController 更加聚焦在业务功能上,你有什么重构的建议吗?