简介
LinkedHashMap内部维护了一个双向链表,能保证元素按插入的顺序访问,也能以访问顺序访问,可以用来实现LRU缓存策略。
LinkedHashMap可以看成是 LinkedList + HashMap。
继承体系

LinkedHashMap继承HashMap,拥有HashMap的所有特性,并且额外增加了按一定顺序访问的特性。
存储结构

我们知道HashMap使用(数组 + 单链表 + 红黑树)的存储结构,那LinkedHashMap是怎么存储的呢?
通过上面的继承体系,我们知道它继承了HashMap,所以它的内部也有这三种结构,但是它还额外添加了一种“双向链表”的结构存储所有元素的顺序。
添加删除元素的时候需要同时维护在HashMap中的存储,也要维护在LinkedList中的存储,所以性能上来说会比HashMap稍慢。
源码解析
属性
/*** 双向链表头节点*/transient LinkedHashMap.Entry<K,V> head;/*** 双向链表尾节点*/transient LinkedHashMap.Entry<K,V> tail;/*** 是否按访问顺序排序*/final boolean accessOrder;
内部类
// 位于LinkedHashMap中static class Entry<K,V> extends HashMap.Node<K,V> {Entry<K,V> before, after;Entry(int hash, K key, V value, Node<K,V> next) {super(hash, key, value, next);}}// 位于HashMap中static class Node<K, V> implements Map.Entry<K, V> {final int hash;final K key;V value;Node<K, V> next;}
存储节点,继承自HashMap的Node类,next用于单链表存储于桶中,before和after用于双向链表存储所有元素。
构造方法
public LinkedHashMap(int initialCapacity, float loadFactor) {super(initialCapacity, loadFactor);accessOrder = false;}public LinkedHashMap(int initialCapacity) {super(initialCapacity);accessOrder = false;}public LinkedHashMap() {super();accessOrder = false;}public LinkedHashMap(Map<? extends K, ? extends V> m) {super();accessOrder = false;putMapEntries(m, false);}public LinkedHashMap(int initialCapacity,float loadFactor,boolean accessOrder) {super(initialCapacity, loadFactor);this.accessOrder = accessOrder;}
前四个构造方法accessOrder都等于false,说明双向链表是按插入顺序存储元素。
最后一个构造方法accessOrder从构造方法参数传入,如果传入true,则就实现了按访问顺序存储元素,这也是实现LRU缓存策略的关键。
afterNodeInsertion(boolean evict)方法
在节点插入之后做些什么,在HashMap中的putVal()方法中被调用,可以看到HashMap中这个方法的实现为空。
void afterNodeInsertion(boolean evict) { // possibly remove eldestLinkedHashMap.Entry<K,V> first;if (evict && (first = head) != null && removeEldestEntry(first)) {K key = first.key;removeNode(hash(key), key, null, false, true);}}protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {return false;}
evict,驱逐的意思。
(1)如果evict为true,且头节点不为空,且确定移除最老的元素,那么就调用HashMap.removeNode()把头节点移除(这里的头节点是双向链表的头节点,而不是某个桶中的第一个元素);
(2)HashMap.removeNode()从HashMap中把这个节点移除之后,会调用afterNodeRemoval()方法;
(3)afterNodeRemoval()方法在LinkedHashMap中也有实现,用来在移除元素后修改双向链表,见下文;
(4)默认removeEldestEntry()方法返回false,也就是不删除元素。
afterNodeAccess(Node e)方法
在节点访问之后被调用,主要在put()已经存在的元素或get()时被调用,如果accessOrder为true,调用这个方法把访问到的节点移动到双向链表的末尾。
void afterNodeAccess(Node<K,V> e) { // move node to lastLinkedHashMap.Entry<K,V> last;// 如果accessOrder为true,并且访问的节点不是尾节点if (accessOrder && (last = tail) != e) {LinkedHashMap.Entry<K,V> p =(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;// 把p节点从双向链表中移除p.after = null;if (b == null)head = a;elseb.after = a;if (a != null)a.before = b;elselast = b;// 把p节点放到双向链表的末尾if (last == null)head = p;else {p.before = last;last.after = p;}// 尾节点等于ptail = p;++modCount;}}
(1)如果accessOrder为true,并且访问的节点不是尾节点;
(2)从双向链表中移除访问的节点;
(3)把访问的节点加到双向链表的末尾;(末尾为最新访问的元素)
afterNodeRemoval(Node e)方法
在节点被删除之后调用的方法。
public V get(Object key) {Node<K,V> e;if ((e = getNode(hash(key), key)) == null)return null;if (accessOrder)afterNodeAccess(e);return e.value;}
get(Object key)方法
获取元素。
public V get(Object key) {Node<K,V> e;if ((e = getNode(hash(key), key)) == null)return null;if (accessOrder)afterNodeAccess(e);return e.value;}
如果查找到了元素,且accessOrder为true,则调用afterNodeAccess()方法把访问的节点移到双向链表的末尾。
总结
(1)LinkedHashMap继承自HashMap,具有HashMap的所有特性;
(2)LinkedHashMap内部维护了一个双向链表存储所有的元素;
(3)如果accessOrder为false,则可以按插入元素的顺序遍历元素;
(4)如果accessOrder为true,则可以按访问元素的顺序遍历元素;
(5)LinkedHashMap的实现非常精妙,很多方法都是在HashMap中留的钩子(Hook),直接实现这些Hook就可以实现对应的功能了,并不需要再重写put()等方法;
(6)默认的LinkedHashMap并不会移除旧元素,如果需要移除旧元素,则需要重写removeEldestEntry()方法设定移除策略;
(7)LinkedHashMap可以用来实现LRU缓存淘汰策略;
LinkedHashMap如何实现LRU缓存淘汰策略呢?
LRU,Least Recently Used,最近最少使用,也就是优先淘汰最近最少使用的元素。
如果使用LinkedHashMap,我们把accessOrder设置为true是不是就差不多能实现这个策略了呢?答案是肯定的。请看下面的代码:
package com.coolcoding.code;import java.util.LinkedHashMap;import java.util.Map;/*** @author: tangtong* @date: 2019/3/18*/public class LRUTest {public static void main(String[] args) {// 创建一个只有5个元素的缓存LRU<Integer, Integer> lru = new LRU<>(5, 0.75f);lru.put(1, 1);lru.put(2, 2);lru.put(3, 3);lru.put(4, 4);lru.put(5, 5);lru.put(6, 6);lru.put(7, 7);System.out.println(lru.get(4));lru.put(6, 666);// 输出: {3=3, 5=5, 7=7, 4=4, 6=666}// 可以看到最旧的元素被删除了// 且最近访问的4被移到了后面System.out.println(lru);}}class LRU<K, V> extends LinkedHashMap<K, V> {// 保存缓存的容量private int capacity;public LRU(int capacity, float loadFactor) {super(capacity, loadFactor, true);this.capacity = capacity;}/*** 重写removeEldestEntry()方法设置何时移除旧元素* @param eldest* @return*/@Overrideprotected boolean removeEldestEntry(Map.Entry<K, V> eldest) {// 当元素个数大于了缓存的容量, 就移除元素return size() > this.capacity;}}
